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Abstract

Background: Hematuria can be symptomatic of urothelial carcinoma (UC) and ruling out patients with benign
causes during primary evaluation is challenging. Patients with hematuria undergoing urological work-ups place
significant clinical and financial burdens on healthcare systems. Current clinical evaluation involves processes that
individually lack the sensitivity for accurate determination of UC. Algorithms and nomograms combining genotypic
and phenotypic variables have largely focused on cancer detection and failed to improve performance. This study
aimed to develop and validate a model incorporating both genotypic and phenotypic variables with high sensitivity
and a high negative predictive value (NPV) combined to triage out patients with hematuria who have a low
probability of having UC and may not require urological work-up.

Methods: Expression of IGFBP5, HOXA13, MDK, CDK1 and CXCR2 genes in a voided urine sample (genotypic) and
age, gender, frequency of macrohematuria and smoking history (phenotypic) data were collected from 587
patients with macrohematuria. Logistic regression was used to develop predictive models for UC. A combined
genotypic-phenotypic model (G + P INDEX) was compared with genotypic (G INDEX) and phenotypic (P INDEX)
models. Area under receiver operating characteristic curves (AUC) defined the performance of each INDEX: high
sensitivity, NPV >0.97 and a high test-negative rate was considered optimal for triaging out patients. The
robustness of the G + P INDEX was tested in 40 microhematuria patients without UC.

Results: The G + P INDEX offered a bias-corrected AUC of 0.86 compared with 0.61 and 0.83, for the P and G
INDEXs respectively. When the test-negative rate was 0.4, the G + P INDEX (sensitivity = 0.95; NPV = 0.98) offered
improved performance compared with the G INDEX (sensitivity = 0.86; NPV = 0.96). 80% of patients with
microhematuria who did not have UC were correctly triaged out using the G + P INDEX, therefore not
requiring a full urological work-up.
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Conclusion: The adoption of G + P INDEX enables a significant change in clinical utility. G + P INDEX can be
used to segregate hematuria patients with a low probability of UC with a high degree of confidence in the
primary evaluation. Triaging out low-probability patients early significantly reduces the need for expensive and
invasive work-ups, thereby lowering diagnosis-related adverse events and costs.

Keywords: Macroscopic hematuria, Microscopic hematuria, Urine test, Urothelial carcinoma, Genotypic
biomarkers, Gene expression, Phenotypic biomarkers, Triage, Clinical pathway, Urology
Background
Hematuria, which is most often associated with causes
such as benign prostatic enlargement, infection or urinary
calculi, but is also symptomatic of urothelial carcinoma
(UC), is estimated to occur in between 1 and 22% of pa-
tients in a general population [1,2]. Macroscopic (macro-)
hematuria is characterized by a visible color change in the
urine of patients, while microscopic (micro-) hematuria is
defined more precisely as the presence of ≥3 red blood cells
per high-powered field (RBCs/HPF) in three concurrently
collected urine samples [2]. The overall prevalence of UC
in patients with microhematuria has been reported to be
approximately 4%, whereas several studies have consistently
shown that the prevalence of UC is much higher in patients
with macrohematuria, ranging from approximately 12–23%
[2-6], yet up to four times as many patients with micro-
versus macrohematuria present for urological evaluation
[7]. Notably, given that recent changes to the American
Urological Association (AUA) guidelines [2] have seen the
threshold for asymptomatic microhematuria (AMH) low-
ered to ≥3 RBCs/HPF in a single sample, and even lower
thresholds (≥1 RBC/HPF) have been proposed [8], a
consequential increase in the number of patients with
hematuria who will undergo a urological work-up to in-
vestigate potential UC and a corresponding increase in the
overall clinical and financial burden of these patients on
healthcare systems is expected.
Such hematuria-related referrals place a significant clin-

ical burden on urologists, as all patients must undergo a
full work-up to provide an often inconclusive diagnosis.
Furthermore, the existing diagnostic tests – many of
which are invasive or have high radiation loadings – can
have a detrimental effect on patient quality of life (QoL),
especially if the patient receives repeated cystoscopies
as mandated in the current guidelines [2]. It has been
reported that for cystoscopies performed without
prophylactic antibiotics, 22% of patients had asymptom-
atic bacteriuria and 1.9% of patients developed a febrile
urinary tract infection (UTI) within 30 days [9]. Other
studies have also reported a high prevalence of macro-
hematuria, pain on voiding and transient erectile dys-
function in men following cystoscopy [10,11].
Healthcare systems also incur a significant financial

burden as a result of patients with hematuria undergoing
a full urological work up [12,13] and it has been con-
cluded that urine cytology adds costs without offering
any significant diagnostic benefit [14-16]. Consequently,
integrating an accurate, non-invasive test into the pri-
mary clinical work-up of patients presenting with
hematuria allows physicians to effectively triage patients
with hematuria, thereby reducing the number of patients
undergoing a full urological work-up and investigative
cystoscopy for UC, and offers significant benefits to both
patients and healthcare systems [15-19].
Several clinical prognostic characteristics, including

age, gender, smoking history and degree of hematuria,
are well-established as risk factors for UC in patients
with hematuria [3,20-22]. Recently, several groups have
attempted to develop models based on clinical prognos-
tic characteristics to predict the risk of UC in patients
with hematuria [20-22], but critically, these models offer
limited accuracy and have largely focused on detecting
patients with UC rather than ruling out patients who do
not have disease. These detection-focused models have
therefore been insufficient to reliably identify patients
with disease during a primary evaluation, even if used in
combination with urine cytology [20-22].
Despite the higher incidence of UC in patients pre-

senting with macrohematuria, a number of studies show
there is no significant difference in the distribution of
UC by grade and stage in patients presenting with
micro- compared with those presenting with macrohe-
maturia [5,23-25]. Therefore, the AUA recommends that
all patients with macrohematuria or AMH be referred to
a urologist for a full urological work-up, as severity of
hematuria is not sufficiently predictive for the presence
of UC [2]. However, as patients with hematuria may only
undergo limited urinalysis in a primary evaluation, con-
sisting of cytology and in some cases imaging studies,
such as ultrasound, a full urological work-up is often ne-
cessary to conclusively detect or rule out UC. While
urine cytology is specified in current guidelines and rou-
tinely used in patients with suspected UC, cytology re-
sults are often inconclusive with atypical or suspicious
findings and also suffer from a low diagnostic yield
driven by a relatively high risk of false negative results
for patients with UC-related hematuria [2,26,27]. Conse-
quently, it can be difficult to rule out benign causes of
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hematuria, whether macrohematuria or AMH, during a
primary evaluation, especially if UC-related hematuria is
intermittent and appears to resolve following treatment
for a benign cause [12].
A number of gene-based studies have set out to profile

urinary biomarkers in patients with UC, and these bio-
markers may be useful in their own right for detecting dis-
ease [28,29]. An opportunity also exists to triage out
patients on the basis of their gene expression profile and
clinical characteristics. Combining NMP22 enzyme-linked
immunosorbent assay (ELISA) tests or a panel of gene
markers with clinical characteristics has been shown to
improve diagnostic accuracy compared with clinical char-
acteristics alone, but these combined models have not yet
delivered significant advances in overall diagnostic accur-
acy, especially when attempting to identify low-risk
patients [30,31]. Nevertheless it is considered that incorp-
orating clinical factors and specific gene expression into a
combined algorithm is likely to provide the best guidance
for diagnosing and managing patients with hematuria or
UC [32].
Cxbladder Detect (Pacific Edge Ltd., Dunedin, New

Zealand), a multigene test performed on unfractionated
urine has previously been shown to be more sensitive
than urine cytology and NMP22 for detecting UC in
patients with macrohematuria [33] and more accurate
than urine cytology, NMP22 and fluorescence in situ
hybridization (FISH) in a comparative analysis (Breen,
Kasabov, O’Sullivan, et al., unpublished observations).
Cxbladder Detect uses quantitative reverse transcrip-
tion polymerase chain reaction (RT-qPCR) technology
to quantify five mRNA markers, four markers that are
overexpressed in UC alongside a fifth marker that is ele-
vated in non-malignant inflammatory conditions, and of-
fers a high level of specificity and sensitivity when used to
detect UC in patients presenting with hematuria [33]. It
was hypothesized that an integrated model combining
high-performance genetic biomarkers with phenotypic
variables collected from the same patients will provide su-
perior clinical resolution using high sensitivity (i.e. a low
probability of a patient with UC receiving a false negative
result), high negative predictive value (i.e. a high propor-
tion of all negative results being true) and a high test-
negative rate to enable the accurate triage of patients who
have a low probability of UC. These genotypic and pheno-
typic variables when combined into a novel segregation
model enable patients with hematuria who have a low
probability of UC to be identified and triaged, as opposed
to undergoing a full urological work-up.

Methods
Patient selection
A prospective sample of 695 patients has been analysed,
where true clinical outcome was determined using a
conventional clinical evaluation. The study sample con-
sisting of an initial cohort of patients with hematuria
was consented and sampled as previously described
[33], where a consecutive series of 517 patients with a
recent history of macrohematuria, aged ≥45 years and
without a prior history of UC, were recruited prospect-
ively from nine urology clinics in Australia and New
Zealand. These patients were followed for three months
for determination of UC status or alternative diagnosis,
including upper urinary tract carcinoma [33] following
multigene analysis of urine samples, with a positive UC
diagnosis being based on cystoscopic appearance and
histopathologic examination. The stage of disease was
classified according to the TNM staging criteria deter-
mined by pathology and diagnostic imaging investigations
and tumor grade was classified according to local path-
ology practice, using the 1998 World Health Organization
(WHO)/International Society of Urological Pathology
(ISUP) consensus classification [34].
Additional cohorts of 94 and 84 patients undergoing

urological investigations following a macrohematuria
event were subsequently recruited from two centers in
New Zealand between March 2012 and April 2013 and
included in the development of models. Centers were
selected to participate on the basis of their previous
experience participating in the initial study and their
willingness to evaluate the Cxbladder Detect product
within individual clinical settings.
An additional set of 45 patients presenting with micro-

hematuria were consented and prospectively sampled
prior to cystoscopic investigation for possible UC. Samples
collected were used for further validation of the G + P
INDEX, as set out below.
Eligibility criteria were similar to those of [33], except

that patients aged ≥18 years and those who had previously
undergone a cystoscopy to investigate UC that proved to
be negative were eligible for enrolment. Furthermore, as
in [33], patients exhibiting symptoms indicative of a UTI,
or bladder or renal calculi, were excluded.
Ethical approvals were obtained from the New Zealand

multiregion Health and Disability Ethics Committees, as
required. All study participants provided informed con-
sent prior to investigation.

Urine sample collection and assessment
To provide gene expression data, a single mid-stream
urine sample was collected from participants using the
Urine Sampling System from Pacific Edge. Multigene
analysis of samples from all studies was carried out in
accordance with the standard operating procedure, as is
used for the commercially available Cxbladder Detect
multigenic test. All urine samples (4.5 mL) from the
initial cohort were collected at a clinic prior to cystos-
copy and transferred to a stabilization liquid via vacuum
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driven aspiration and sent to Pacific Edge within 48 hours.
The samples were then stored at -80°C until required for
batch analysis. Samples from the subsequent cohorts were
collected in the same manner, but shipped to Pacific Edge
at ambient temperature and processed within 7 days of
sample collection in accordance with revised quality con-
trol (QC) limits and tolerance testing performed at the Pa-
cific Edge diagnostic laboratory.

Definitions
The term ‘phenotypic’ has been used to define clinical
prognostic characteristics and to distinguish them from
gene expression-based biomarkers that have been broadly
defined as ‘genotypic’ variables.

Statistical analysis
Univariate logistic regression was used to estimate the
unadjusted (raw) log odds ratio (logOR) co-efficients for
four binary phenotypic variables associated with UC:
age, gender, smoking history and average daily frequency
of hematuria events observed by the patient during the
most recent hematuria episode (Hfreq; see Table 1). For
microscopic hematuria, no events were observed, hence
Hfreq = 0. Multivariate logistic regression on all four
phenotypic variables was used to generate adjusted
logOR co-efficients in the phenotypic model (P INDEX).
G INDEX was developed using logistic regression to

determine the association between UC and mRNA con-
centrations for the five Cxbladder Detect genes (IGFBP5,
HOXA13, MDK, CDK1 and CXCR2) in urine samples. A
multivariate genotypic-phenotypic model (G + P INDEX)
was generated using a combination of all nine variables
from the G INDEX and P INDEX. These linear models
determined the logOR from which the probability of a
patient having UC can be derived.
The relative performance of each of model was illus-

trated in receiver operating characteristic (ROC) curves
plotting the true positive rate versus the false positive
rate when testing for UC, as determined by each model.
Area under the curve (AUC) was used to summarize the
performance of each model with an AUC approaching 1
deemed to be optimal.
To reduce potential bias when model estimation

and prediction are performed on the same data set, a
Table 1 Definitions of binary phenotypic variables
associated with UC and their corresponding scores

Phenotypic
parameter

Score

0 1

Gender Female Male

Age <60 years ≥60 years

Smoking history Never smoked Current or past smoker

Hfreq ≤1 event/day >1 event/day
bias-corrected AUC was calculated for each of the
three logistic regression models using bootstrap re-
sampling [35]. The difference between the nominal
AUC from the original sample and the average AUC
from the bootstrap samples is an estimate of the sample
bias and the nominal AUCs were adjusted accordingly.
Bootstrap estimates of bias-corrected confidence intervals
(CIs) were also obtained [36].
Furthermore, it was a design criteria for this clinical

test that the performance characteristics of each model
must exceed a threshold NPV of 0.97, with as high a
sensitivity as possible with the further caveat of having a
high test-negative rate. The test-negative rate is selected
to provide a high clinical resolution when triaging out
patients presenting with hematuria who have a low
probability of having UC. Comparisons were made be-
tween the G INDEX, P INDEX and G + P INDEX and
the performance of each model was determined in terms
of sensitivity and NPV with a sufficiently high test-
negative rate to provide an effective tool for triaging out
patients with hematuria who have a low probability of
UC.

Results
Sample demographics
Of the 695 patients with macrohematuria registered
across the three cohorts, 23 were deemed to be ineligible
and samples from a further 85 patients were excluded
after enrolment due to the absence of sufficient data or
samples failing to meet QC standards (see Figure 1A). In
total, samples from 587 patients were available for mod-
elling comprising 72 UC-positive and 515 UC-negative
samples.
Of the 45 samples from patients with microhematuria

provided, 40 were suitable for analysis with 5 patients
deemed ineligible and excluded from the analysis (see
Figure 1B). All 45 patients had received a full urological
evaluation and clinical truth was confirmed as UC-
negative. Full demographic data from both sample popula-
tions is presented in Table 2.

Relationship between phenotypic variables and risk of UC
in patients with macrohematuria
Univariate logistic regression analyses of each of the four
binary phenotypic variables indicated that age ≥60 years,
male gender, a history of smoking and a high fre-
quency of macrohematuria were all associated with
an increased risk of UC (Table 3). Adjusted logOR
co-efficients were calculated in the multivariate logistic re-
gression model.

P INDEX ¼ −3:78þ ð0:81� Ageþ 0:46� Gender

þ 0:78� Smoking history þ 0:59�HfreqÞ



Registered patients  
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Figure 1 Standards for Reporting of Diagnostic Accuracy (STARD) diagram for patient recruitment and enrolment. Legend: (A) Patients
with macrohematuria across all three cohorts in this study; B) patients with microhematuria included in this study.

Table 2 Sample population demographics for patients with macro- and microhematuria with complete data

Parameter Patients with macrohematuria (N = 587), n (%) Patients with microhematuria (N = 40), n (%)

Age, years <40 8 (1.4)

21 (52.5)40–49 47 (8.0)

50–59 107 (18.2)

60–69 143 (24.4)

19 (47.5)70–79 181 (30.8)

80–100 101 (17.2)

Gender Female 113 (19.3) 25 (62.5)

Male 474 (80.7) 15 (37.5)

Smoking history Never smoked 246 (41.9) 25 (62.5)

Current or past smoker 341 (58.1) 15 (37.5)

Hfreq (events/day) ≤1 332 (56.6) 40 (100)

>1 255 (43.4) –

Tumor stage Normal 515 (87.7) 40 (100)

T1 16 (2.7) –

T2 11 (1.9) –

T3 2 (0.3) –

Ta 40 (6.8) –

Tis 3 (0.5) –
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Table 3 Unadjusted and adjusted ORs for UC by phenotypic and genotypic factors for patients with hematuria

Unadjusted
OR (95% CI)

Adjusted P variable
OR (95% CI)

Adjusted G + P variable
OR (95% CI)

Phenotypic variables Control (non-UC) UC

Age, years <60 151 11
2.30 (1.22–4.73) 2.24 (1.18–4.65) 1.89 (0.85–4.64)

≥60 364 61

Gender Female 105 8
2.05 (1.01–4.75) 1.58 (0.76–3.72) 3.03 (1.12–9.36)

Male 410 64

Smoking history Never smoked 227 19
2.20 (1.29–3.91) 2.19 (1.27–3.92) 2.67 (1.34–5.64)

Current or past smoker 288 53

Hfreq (average events/day) ≤1 300 32
1.74 (1.06–2.88) 1.80 (1.08–3.00) 1.76 (0.93–3.35)

>1 215 40

Unadjusted
OR (95% CI)

Adjusted G variable
OR (95% CI)

Adjusted G + P variable
OR (95% CI)

Genotypic variables

IGFBP5 7.34 (4.59–12.33) 2.15 (1.03–4.58) 2.21 (1.03–4.83)

HOXA13 6.27 (3.92–10.34) 0.33 (0.13–0.83) 0.20 (0.07–0.56)

MDK 7.10 (4.73–11.10) 4.76 (1.74–13.62) 8.14 (2.64–26.60)

CDK1 7.80 (5.11–12.39) 3.47 (1.39–9.13) 2.59 (0.98–7.18)

CXCR2 1.69 (1.36–2.10) 0.65 (0.45–0.92) 0.69 (0.47–0.98)

Adjusted P INDEX, G INDEX and G + P INDEX variable ORs are the exponentiated co-efficients in the P INDEX, G INDEX and G + P INDEX, respectively.
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where each phenotypic variable is assigned a binary
score of 0 or 1, as designated in Table 1, and the confi-
dence intervals for the co-efficients are presented in
Table 3. The bias-corrected estimate for AUC for the P
INDEX is 0.66 (95% CI: 0.55–0.67; Figure 2).

Relationship between genotypic variables and risk of UC
in patients with macrohematuria
The G INDEX was estimated by logistic regression using
the log mRNA concentrations of the five genes IGFBP5,
HOXA13, MDK, CDK1 and CXCR2 in urine samples to
predict UC occurrence.

G INDEX ¼ −6:22þ ð0:77� IGFBP5

– 1:11�HOXA13þ 1:56�MDK

þ 1:24� CDK1– 0:43� CXCR2Þ

The G INDEX gives a bias-corrected AUC of 0.83
(95% CI: 0.74–0.89; Figure 2).

Relationship between genotypic and phenotypic variables
and risk of UC in patients with macrohematuria
The five continuous genotypic variables were then com-
bined with the four binary phenotypic variables to estimate
the G + P INDEX using multivariate logistic regression.
Gþ P INDEX ¼ −8:46 þ ð0:79� IGFBP5
– 1:60� HOXA13þ 2:10�MDK þ 0:95� CDK1
– 0:38� CXCR2Þ þ ð0:64� Age þ 1:11�Gender
þ 0:98� Smoking history þ 0:56�HfreqÞ

The G + P INDEX gives a bias-corrected AUC of 0.86
(95% CI: 0.80–0.91).

Comparison between G INDEX and G + P INDEX
There is overlap between the confidence intervals for
the G INDEX and G + P INDEX, so a bootstrap version
of a paired test was constructed by determining the
difference in AUC for the G INDEX and G + P INDEX
for each bootstrap sample. Ten thousand bootstrap sam-
ples with a sample size of n = 587 were generated by ran-
dom sampling with replacement from the original 587
samples available for analysis. The resulting 95% CI for
the difference between models was 0.01–0.08. Thus the
probability that the true difference between the two
AUCs is less than 0.01 is <0.025, indicating that there is
a high likelihood of the AUC for the G + P INDEX being
significantly greater than the AUC for the G INDEX.

NPV and sensitivity of models
The G + P INDEX generated an NPV >0.97 over the
range of test-negative rates from 0.2 to 0.7 and was
almost always higher than the NPV for the G INDEX
model (Figure 3). The G + P INDEX offered performance



Figure 2 ROC curves representing the three classification models. Legend: P INDEX (dotted), G INDEX (dashed) and G + P INDEX (solid).
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characteristics of sensitivity of 0.95 and NPV 0.98 when
the test-negative rate was 0.4 (Table 4; Figure 3). In con-
trast, the G INDEX only achieved sensitivity of 0.86 and
an NPV of 0.96 when the test-negative rate was 0.4
(Table 4).

Application of the G + P INDEX in patients with
microhematuria
While the G + P INDEX was developed using data from
patients with macrohematuria, its robustness was tested
in a further 40 samples from patients with microhema-
turia (Hfreq = 0 for all microhematuria patients). A higher
test-negative rate was expected in a microhematuria popu-
lation as the incidence of UC is lower in this population,
and using a test-negative rate of 0.4, 32 (80%) patients
tested negative and would be correctly triaged out, there-
fore not requiring a full urological work-up for the deter-
mination of UC.

Discussion
This study defines a clinical tool that offers clinicians
and physicians the ability to effectively triage-out
patients presenting with hematuria from the need to
have a full urological work-up for the detection of UC.
The study presents an internally validated genotypic-
phenotypic model, G + P INDEX, with bootstrap-based
CI estimates, that offers a combination of high sensitivity
and high NPV (i.e. a low probability of an individual pa-
tient with UC providing a false-negative result and a
high proportion of all negative results being true) that is
not offered by models derived exclusively from genotypic
or phenotypic data alone. This provides clinicians and
physicians with a unique opportunity to triage out pa-
tients with both micro- and macrohematuria, in particu-
lar by identifying patients with a low risk of having UC
who do not require a full urological work-up.
A high test-negative rate in the context of high sensi-

tivity is an important consideration for an effective
triage-out test that aims to direct patients with a low
probability of UC away from a full clinical work-up [37].
Accordingly, at a test-negative rate of 0.4 the sensitivity
of the G + P INDEX presented here maximizes both the
sensitivity and NPV (0.95 and 0.98, respectively). This
can be compared with the best fit selected from the
genotypic model published in [33] (sensitivity = 0.82;
NPV = 0.97) and is also comparable with the sensitivity
and NPV of both cystoscopy (sensitivity = 0.89–0.98;
NPV = 0.99) and virtual cystoscopy using computed
tomography (CT) scans or magnetic resonance imaging
(MRI) (sensitivity = 0.94 and 0.91, respectively) [38-40].
It is acknowledged that the population used to derive

the G INDEX, P INDEX and G + P INDEX in this



Figure 3 NPV versus proportion of patients with hematuria testing negative according to the three classification models. Legend: P
INDEX (dotted), G INDEX (dashed) and G + P INDEX (solid) models. Note that the curve for the P INDEX is discrete as only 16 possible
combinations of phenotypic variables are possible. The only possible values taken are indicated by the prominent points on this curve.
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instance consisted of patients with macrohematuria.
Therefore, the derived NPV values are only applicable to
the macrohematuria population. The sensitivity of 0.95
(95% CI: 0.86–0.98) may, however, be applied across
populations. Presuming that patients with and without
UC are similarly distributed amongst the micro- and
macrohematuria patient populations as depicted in
[5,23-25], and that expected UC prevalence is 4% in the
microhematuria population, a higher NPV and test-
negative rate can be expected in the target microhema-
turia population.
By applying the G + P INDEX to the sample popula-

tion of patients with microhematuria who do not have
UC it was shown that 80% of the patients would have
been triaged out on the basis of the result. Only 20%
would be referred for a full urological work-up. This
compares with conventional guidelines that would cur-
rently see all of the patients (100%) with microhematuria
that cannot be attributed to a benign cause undergoing a
full urological work-up, incurring significant unnecessary
costs and negatively impacting patient QoL.
Severity of hematuria is correlated with the probability

of a patient having UC, but not the stage or grade of any
tumor, and an estimated 96% and 77–88% of patients
with micro- and macrohematuria, respectively, referred
to a urologist will not have UC [2-6]. Consequently,
avoiding potentially unnecessary urological work-ups for
patients with hematuria has several benefits. Cystoscopy
may be associated with adverse effects, such as pain on
voiding, bleeding, UTIs, male sexual dysfunction and the
anxiety that accompanies an inconclusive or uncon-
firmed UC diagnosis [9-11]. Most notably, this novel
approach has the potential to reduce the burden on
resources and the financial cost associated with a full
urological work-up on UC-negative patients. For ex-
ample, in the UK, avoiding cystoscopy in patients with
hematuria with an initial negative cytology and/or tumor
biomarker test has been estimated to save approximately
US$770 per patient (£483 per patient) evaluated [13].
The G + P INDEX described here provides an effective
alternative to the use of urine cytology when used in a
primary evaluation setting. This is particularly relevant
in settings where primary evaluation is carried out by
primary care physicians.
On this basis, if we assign an arbitrary ‘nominal cost’

of US$4,500 for each full urological work up, the total
cost for working up 1,000 patients with microhematuria
would approach US$4.5 million. In contrast, if 80% of
patients with microhematuria are triaged out using the
G + P INDEX at an arbitrary nominal cost of US$2,500,



Table 4 Performance characteristics of each model when thresholds are set for varying test negative rates as
determined on the macroscopic hematuria population

Threshold (logOR) Test-negative rate (95% CI) NPV (95% CI) Sensitivity (95% CI) Specificity (95% CI)

P INDEX

-2.54 0.25 (0.21–0.28) 0.97 (0.92–0.99) 0.93 (0.85–0.98) 0.27 (0.23–0.31)

-2.52 0.38 (0.34–0.42) 0.95 (0.91–0.97) 0.83 (0.74–0.91) 0.41 (0.37–0.45)

-2.39 0.42 (0.37–0.45) 0.95 (0.91–0.97) 0.82 (0.72–0.90) 0.45 (0.40–0.49)

-1.95 0.51 (0.47–0.54) 0.92 (0.89–0.95) 0.68 (0.56–0.78) 0.53 (0.49–0.57)

-1.93 0.51 (0.46–0.55) 0.92 (0.89–0.95) 0.68 (0.56–0.78) 0.53 (0.49–0.58)

-1.73 0.82 (0.79–0.85) 0.90 (0.87–0.92) 0.32 (0.22–0.43) 0.84 (0.81–0.87)

G INDEX

-3.46 0.20 (0.17–0.23) 0.94 (0.88–0.97) 0.90 (0.80–0.95) 0.22 (0.18–0.25)

-3.23 0.30 (0.26–0.34) 0.95 (0.91–0.98) 0.89 (0.80–0.95) 0.33 (0.28–0.37)

-3.04 0.40 (0.36–0.44) 0.96 (0.92–0.98) 0.86 (0.77–0.93) 0.44 (0.40–0.48)

-2.86 0.50 (0.46–0.54) 0.97 (0.94–0.98) 0.86 (0.77–0.93) 0.55 (0.51–0.59)

-2.63 0.60 (0.56–0.63) 0.96 (0.94–0.98) 0.82 (0.71–0.90) 0.66 (0.62–0.69)

-2.41 0.70 (0.66–0.73) 0.96 (0.94–0.98) 0.78 (0.65–0.86) 0.77 (0.73–0.80)

G + P INDEX

-4.02 0.20 (0.17–0.23) 0.97 (0.93–0.99) 0.96 (0.88–0.99) 0.22 (0.19–0.26)

-3.67 0.30 (0.26–0.33) 0.98 (0.94–0.99) 0.94 (0.87–0.99) 0.33 (0.29–0.37)

-3.33 0.40 (0.36–0.44) 0.98 (0.95–1.00) 0.95 (0.86–0.98) 0.45 (0.40–0.49)

-2.99 0.50 (0.46–0.54) 0.98 (0.96–0.99) 0.92 (0.83–0.97) 0.56 (0.52–0.60)

-2.71 0.60 (0.56–0.64) 0.97 (0.95–0.99) 0.86 (0.76–0.93) 0.67 (0.63–0.71)

-2.37 0.70 (0.66–0.73) 0.97 (0.94–0.98) 0.80 (0.70–0.88) 0.77 (0.73–0.80)
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the total direct cost of testing and full urological work-
ups for the remaining 20% of patients would total US
$3.4 million. This provides a notional net saving in dir-
ect costs of approximately US$1.1 million per 1,000 pa-
tients with microhematuria.
The G + P INDEX and G INDEX, developed in this

study, use the same genotypic biomarkers used in the
genotypic model described in O’Sullivan et al. [33].
However, the G + P INDEX adds a further four pheno-
typic variables to enhance the ability to segregate pa-
tients who have a low probability of UC. The G + P
INDEX uses a combinatorial method with a high sensi-
tivity and a high NPV. By contrast, the genotypic model
described in O’Sullivan et al. [33] optimizes the balance
between sensitivity and specificity to calibrate the model
calibrated for the optimal primary detection of UC in
symptomatic patients (i.e. presenting with hematuria)
who were undergoing a full urological work-up for
suspected UC. The G + P INDEX has a significantly dif-
ferent clinical endpoint as no attempt is made to define
or select patients with UC. Instead the aim is to confi-
dently rule out those who do not have UC, and as such,
all patients not segregated out would progress for a full
urological work-up.
While several studies have previously sought to de-
velop predictive models that consider phenotype when
assessing the risk of UC in patients presenting with
hematuria, the accuracy of phenotype-dependent models
alone appears to be limited. For example, Loo et al. [21]
prospectively investigated whether phenotypic parame-
ters could be used to identify patients with microhema-
turia who may not have required a urological referral
and full work-up and concluded that age, male gender
and a recent diagnosis of macrohematuria were signifi-
cant predictors of UC. A history of smoking and >25
RBCs/HPF in a recent urinalysis were not statistically
significant predictors of UC, in isolation, but even when
included in their ‘Hematuria Risk Index’ to improve pre-
dictive accuracy, this index resulted in an AUC of 0.809
[21]. Interestingly, the phenotypic ORs in this study and
those identified by Loo et al. are comparable, with over-
lapping 95% CIs for smoking history and gender, and
while age, gender and smoking history have similar
weightings in each model, the influence of the genotypic
component of the G + P INDEX presented here is likely
to account for the higher AUC [21].
Likewise, Cha et al. [20] reported that age, smoking

history and degree of hematuria, but not gender, were
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significantly correlated with the presence of UC in pa-
tients with asymptomatic hematuria and used a multivari-
ate model to develop a nomogram comprised of
phenotypic and urine cytology data for predicting UC. As
with Loo et al. [21], the reported phenotypic ORs are
comparable to those reported here, but even after incorp-
orating urine cytology into the nomogram, the AUC of
0.831 reported in [20] was lower than that of the G + P
INDEX.
In another study, Tan et al. [22] retrospectively strati-

fied patients with hematuria who had been referred to a
specialist urology clinic into high- and low-risk groups
using a nomogram derived from patient age, gender,
smoking history and the degree of hematuria. While
comparisons with this study must be made with caution
given the high proportion of patients who were excluded
due to an absence of data (80 out of 405 patients), the
AUC of 0.804, sensitivity of 0.900 and NPV of 0.953
were all lower than the G + P INDEX described here.
Several attempts have also been made to improve the

accuracy of phenotypic models by supplementing them
with the results of urinary biomarker tests. When the
nuclear matrix protein NMP22 point of care proteomic
assay is used in isolation to detect UC it has a sensitivity
of 0.557 and NPV of 0.968 [17]. Lotan et al. [41] pub-
lished a multivariable algorithm comprising phenotypic
factors, NMP22 and urine cytology with an AUC for
predicting UC of 0.826 that was then prospectively
validated with an AUC of 0.802 [31]. However, it is im-
portant to note that this model attempted to discrimin-
ate between high-risk patients who did and did not have
UC, as opposed to maximizing sensitivity and NPV to
triage-out patients with a low probability of UC.
The improved accuracy obtained with algorithms com-

prising both genotypic and phenotypic data have previ-
ously been demonstrated in breast cancer, in particular
[42-45]. Likewise, Mitra et al. [30] used a combination of
molecular markers and smoking intensity to calculate a
multivariate model that was superior to routine clinico-
pathological parameters in predicting survival in patients
with UC. However, the present study is the first to dem-
onstrate that phenotypic risk factors can be combined
with genotypic data to increase the accuracy of a model
for separating patients with hematuria into categories re-
quiring differential levels of urological follow up and
clinical care rather than survivorship prediction.
When phenotypic data are combined with genotypic

data in a model, the resolution of data is likely to impact
the accuracy of the model. For example, smoking is a
well understood risk factor for UC and is included in
most phenotypic models for detecting UC. In Cha et al.
[20], Tan et al. [22], Lotan et al. [31,41] and the current
study, the binary discriminants never smoked and
current/ex-smoker were used, whereas Mitra et al. [30]
calculated smoking intensity on the basis of years of
smoking and number of cigarettes smoked each day and
Loo et al. [21] categorized smokers into never smoked,
passive smokers, smokers who had ceased and current
smokers. While it is known that the risk of UC increases
substantially with exposure to smoking [46], arbitrarily
defining phenotypic variables may limit the overall ac-
curacy and utility of phenotypic models. In contrast, an
interaction between a patient’s genotypic and phenotypic
variables would not be unexpected. However, combining
the impact of phenotypic factors and genotypic variables
in a single tool improved the accuracy of the model de-
scribed in this study. A similar principle also applies to
describing hematuria phenotype. Patients presenting
with micro- or macrohematuria are essentially on a
biological continuum and have different likelihoods of
having UC [2-6,21]. Accordingly, despite all patients
with microhematuria in this study having a Hfreq score
of 0, the severity of their hematuria, in combination
with other phenotypic factors, is likely to be indirectly
accounted for in the genotypic component of the G + P
INDEX.

Conclusions
In conclusion, the G + P INDEX reported here shows a
significant opportunity to change clinical utility. G + P
INDEX is able to accurately triage out patients who
present to their clinician or physician with hematuria,
who have a low probability of UC with a high overall
test-negative rate, high level of sensitivity and high NPV.
This model could be suitable for use by physicians to tri-
age out patients who do not require a full urological
work-up, thereby reducing the number of patients with
hematuria requiring a full urological evaluation for UC,
helping to maintain patient QoL and helping to reduce
diagnosis-related costs.

Abbreviations
AMH: Asymptomatic microhematuria; AUA: American Urological Association;
AUC: Area under the curve; CI: Confidence interval; CT: Computed
tomography; ELISA: Enzyme-linked immunosorbent assay;
FISH: Fluorescence in situ hybridization; HPF: High-powered field;
logOR: log odds ratio; Hfreq: average daily frequency of hematuria events
during the most recent hematuria episode; ISUP: International Society of
Urological Pathology; MRI: Magnetic resonance imaging; NPV: Negative
predictive value; OR: Odds ratio; QC: Quality control; QoL: Quality of life;
RBC: Red blood cell; ROC: Receiver operating characteristic; RT-qPCR: Reverse
transcription quantitative polymerase chain reaction; STARD: Standards for
Reporting of Diagnostic Accuracy; UC: Urothelial carcinoma; WHO:
World Health Organization.

Competing interests
LK, POS, JS and DD are employees of Pacific Edge Ltd and BP is an employee
of Pacific Edge Diagnostics New Zealand Ltd. JS, BP and DD also hold shares
and/or share options in Pacific Edge Ltd., a public company whose shares
trade on the New Zealand Stock Exchange. DD and POS are listed as
applicants in a Patent Cooperation Treaty application, and a corresponding
US patent application, covering this technology and JS has advised on the
filing of this application. PG is an investigator in clinical trials funded by
Pacific Edge Ltd. CC declares that he has no competing interests.



Kavalieris et al. BMC Urology  (2015) 15:23 Page 11 of 12
Authors’ contributions
LK was principally responsible for the statistical analysis and model
development and interpreting the data. POS contributed to study
management, data collection and interpretation and analysing the published
literature. JS contributed to study management and data interpretation and
analysing the published literature. BP contributed to the study design and
conception, data interpretation and analysis of the published literature. PG
contributed to study conception and design, conducted aspects of the study
relating to collection of data from patients with macrohematuria and
assisted with interpreting the data. CC collected data from patients with
microhematuria. DD contributed to the study design and conception,
conducting and managing the study, performing statistical analysis,
interpreting data and analysing published literature. All authors contributed
to the preparation of this manuscript and approved the final draft prior to
submission.
Acknowledgements
The authors thank Dr Mark Dalphin of Pacific Edge Ltd. for his assistance in
performing this study and providing editorial suggestions, and Dr Satish
Kumar from Plant and Food Research (Hastings, New Zealand) for contributing
to the analysis of the combination of G INDEX, P INDEX and G + P INDEX. The
authors also thank Blair Hesp of Kainic Medical Communications Ltd. who
provided medical writing services on behalf of Pacific Edge Ltd.

Author details
1Pacific Edge Ltd, Dunedin, New Zealand. 2Pacific Edge Diagnostics Ltd,
Dunedin, New Zealand. 3Tauranga Urology Research, Tauranga, New
Zealand. 4Department of Urology, Palmerston North Hospital, Palmerston
North, New Zealand.

Received: 25 November 2014 Accepted: 16 March 2015
References
1. Kelly JD, Fawcett DP, Goldberg LC. Assessment and management of non-

visible haematuria in primary care. BMJ. 2009;338:a3021.
2. Davis R, Jones JS, Barocas DA, Castle EP, Lang EK, Leveillee RJ, et al.

Diagnosis, evaluation and follow-up of asymptomatic microhematuria
(AMH) in adults: AUA guideline. J Urol. 2012;188(6 Suppl):2473–81.

3. Sutton JM. Evaluation of hematuria in adults. JAMA. 1990;263:2475–80.
4. Khadra MH, Pickard RS, Charlton M, Powell PH, Neal DE. A prospective

analysis of 1,930 patients with hematuria to evaluate clinical practice. J Urol.
2000;163:524–7.

5. Davidson P. Re-design of a haematuria clinic: Assessment of 2346 haematuria
patients. J Urol. 2011;185(4S):e495.

6. Price SJ, Shephard EA, Stapley SA, Barraclough K, Hamilton WT. Non-visible
versus visible haematuria and bladder cancer risk: A study of electronic
records in primary care. Br J Gen Pract. 2014;64:e584–9.

7. Buteau A, Seideman CA, Svatek RS, Youssef RF, Chakrabati G, Reed G, et al.
What is evaluation of hematuria by primary care physicians? Use of
electronic medical records to assess practice patterns with intermediate
follow-up. Urol Oncol. 2014;32:128–34.

8. Jimbo M. Evaluation and management of hematuria. Prim Care.
2010;373:461–72.

9. Herr HW. The risk of urinary tract infection after flexible cystoscopy in
bladder tumor patients who did not receive prophylactic antibiotics. J Urol.
2015;193:548–51.

10. Burke DM, Shackley DC, O’Reilly PH. The community-based morbidity of
flexible cystoscopy. BJU Int. 2002;89:347–9.

11. Stav K, Leibovici D, Goren E, Livshitz A, Siegel YI, Lindner A, et al. Adverse
effects of cystoscopy and its impact on patients’ quality of life and sexual
performance. Isr Med Assoc J. 2004;6:474–8.

12. Rao PK, Jones JS. How to evaluate ‘dipstick hematuria’: What to do before
you refer. Cleve Clin J Med. 2008;75:227–33.

13. Rodgers M, Nixon J, Hempel S, Aho T, Kelly J, Neal D, et al. Diagnostic tests
and algorithms used in the investigation of haematuria: systematic reviews
and economic evaluation. Health Technol Assess. 2006;10:iii–iv. xi-259.

14. Falebita OA, Lee G, Sweeney P. Urine cytology in the evaluation of
urological malignancy revisited: is it still necessary? Urol Int. 2010;84:45–9.
15. Feifer AH, Steinberg J, Tanguay S, Aprikian AG, Brimo F, Kassouf W. Utility of
urine cytology in the workup of asymptomatic microscopic hematuria in
low-risk patients. Urology. 2010;75:1278–82.

16. Svatek RS, Hollenbeck BK, Holmäng S, Lee R, Kim S, Stenzl A, et al. The
economics of bladder cancer: Costs and considerations of caring for this
disease. Eur Urol. 2014;66:253–62.

17. Grossman HB, Messing E, Soloway M, Tomera K, Katz G, Berger Y, et al.
Detection of bladder cancer using a point-of-care proteomic assay. JAMA.
2005;293:810–6.

18. Friedlander DF, Resnick MJ, You C, Bassett J, Yarlagadda V, Penson DF, et al.
Variation in the intensity of hematuria evaluation: a target for primary care
quality improvement. Am J Med. 2014;127:633–40.

19. Shinagare AB, Silverman SG, Gershanik EF, Chang SL, Khorasani R. Evaluating
hematuria: impact of guideline adherence on urologic cancer diagnosis. Am
J Med. 2014;127:625–32.

20. Cha EK, Tirsar LA, Schwentner C, Hennenlotter J, Christos PJ, Stenzl A, et al.
Accurate risk assessment of patients with asymptomatic hematuria for the
presence of bladder cancer. World J Urol. 2012;30:847–52.

21. Loo RK, Lieberman SF, Slezak JM, Landa LM, Mariani AJ, Nicolaisen G, et al.
Stratifying risk of urinary tract malignant tumors in patients with
asymptomatic microscopic hematuria. Mayo Clin Proc. 2013;88:129–38.

22. Tan GH, Shah SA, Ann HS, Hemdan SN, Shen LC, Galib NAFA, et al.
Stratifying patients with haematuria into high or low risk groups for bladder
cancer: a novel clinical scoring system. Asian Pac J Cancer Prev.
2013;14:6327–30.

23. Sultana S, Goodman C, Bryne D, Baxby K. Microscopic haematuria: urological
investigation using a standard protocol. Br J Urol. 1996;78:691–8.

24. Sugimura K, Ikemoto S-I, Kawashima H, Nishisaka N, Kishimoto T. Microscopic
hematuria as a screening marker for urinary tract malignancies. Int J Urol.
2001;8:1–5.

25. Viswanath S, Zelhof B, Ho E, Sethia K, Mills R. Is routine urine cytology useful
in the haematuria clinic? Ann R Coll Surg Engl. 2008;90:153–5.

26. Steiner H, Bergmeister M, Verdorfer I, Granig T, Mikuz G, Bartsch G, et al.
Early results of bladder-cancer screening in a high-risk population of heavy
smokers. BJU Int. 2008;102:291–6.

27. Yeung C, Dinh T, Lee J. The health economics of bladder cancer: An
updated review of the published literature. Pharmacoeconomics.
2014;32:1093–104.

28. Holyoake A, O’Sullivan P, Pollock R, Best T, Watanabe J, Kajita Y, et al.
Development of a multiplex RNA urine test for the detection and
stratification of transitional cell carcinoma of the bladder. Clin Cancer Res.
2008;14:742–9.

29. Sapre N, Anderson PD, Costello AJ, Hovens CM, Corcoran NM. Gene-based
urinary biomarkers for bladder cancer: an unfulfilled promise? Urol Oncol.
2014;32:48.e9–17.

30. Mitra AP, Castelao JE, Hawes D, Tsao-Wei DD, Jiang X, Shi SR, et al. Combination
of molecular alterations and smoking intensity predicts bladder cancer outcome.
Cancer. 2013;119:756–65.

31. Lotan Y, Svatek RS, Krabbe LM, Xylinas E, Klatte T, Shariat SF. Prospective
external validation of model for bladder cancer detection. J Urol.
2014;192:1343–8.

32. Abogunrin F, O’Kane HF, Ruddock MW, Stevenson M, Reid CN, O’Sullivan
JM, et al. The impact of biomarkers in multivariate algorithms for bladder
cancer diagnosis in patients with hematuria. Cancer. 2012;118:2641–50.

33. O’Sullivan P, Sharples K, Dalphin M, Davidson P, Gilling P, Cambridge L, et al.
A multigene urine test for the detection and stratification of bladder cancer
in patients presenting with hematuria. J Urol. 2012;188:741–7.

34. Epstein JI, Amin MB, Reuter VR, Mostofi FK. The World Health Organization/
International Society of Urological Pathology consensus classification of
urothelial (transitional cell) neoplasms of the urinary bladder. Bladder
Consensus Conference Committee. Am J Surg Pathol. 1998;22:1435–48.

35. Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman
Hill; 1993.

36. DiCiccio TJ, Efron B. Bootstrap confidence intervals. Statist Sci. 1996;11:189–228.
37. Van’t Hoog AH, Cobelens F, Vassall A, van Kampen S, Dorman SE, Alland D,

et al. Optimal triage test characteristics to improve the cost-effectiveness of
the Xpert MTB/RIF assay for TB diagnosis: A decision analysis. PLoS One.
2013;8:e82786.

38. Qu X, Huang X, Wu L, Huang G, Ping X, Yan W. Comparison of virtual
cystoscopy and ultrasonography for bladder cancer detection: A meta-analysis.
Eur J Radiol. 2010;80:188–97.



Kavalieris et al. BMC Urology  (2015) 15:23 Page 12 of 12
39. Mowatt G, N’Dow J, Vale L, Nabi G, Boachie C, Cook JA, et al. Photodynamic
diagnosis of bladder cancer compared with white light cystoscopy:
Systematic review and meta-analysis. Int J Technol Assess Health Care.
2011;27:3–10.

40. Blick CG, Nazir SA, Mallett S, Turney BW, Onwu NN, Roberts IS, et al.
Evaluation of diagnostic strategies for bladder cancer using computed
tomography (CT) urography, flexible cystoscopy and voided urine cytology:
Results for 778 patients from a hospital haematuria clinic. BJU Int.
2012;110:84–94.

41. Lotan Y, Capitanio U, Shariat SF, Hutterer GC, Karakiewicz PI. Impact of
clinical factors, including a point-of-care nuclear matrix protein-22 assay and
cytology, on bladder cancer detection. BJU Int. 2009;103:1368–74.

42. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating
familial and personal risk factors. Stat Med. 2004;23:1111–30.

43. Dubsky P, Brase JC, Jakesz R, Rudas M, Singer CF, Greil R, et al. The
EndoPredict score provides prognostic information on late distant
metastases in ER+/HER2− breast cancer patients. Br J Cancer.
2013;109:2959–64.

44. Brentnall AR, Evans DG, Cuzick J. Distribution of breast cancer risk from SNPs
and classical risk factors in women of routine screening age in the UK. Br J
Cancer. 2014;110:827–8.

45. Filipits M, Nielsen TO, Rudas M, Greil R, Stöger H, Jakesz R, et al. The PAM50
risk-of-recurrence score predicts risk for late distant recurrence after
endocrine therapy in postmenopausal women with endocrine-responsive
early breast cancer. Clin Cancer Res. 2014;20:1298–305.

46. Krabbe LM, Svatek RS, Shariat SF, Messing E, Lotan Y. Bladder cancer risk:
Use of the PLCO and NLST to identify a suitable screening cohort. Urol
Oncol. 2015;33:65.e19–25.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patient selection
	Urine sample collection and assessment
	Definitions
	Statistical analysis

	Results
	Sample demographics
	Relationship between phenotypic variables and risk of UC in patients with macrohematuria
	Relationship between genotypic variables and risk of UC in patients with macrohematuria
	Relationship between genotypic and phenotypic variables and risk of UC in patients with macrohematuria
	Comparison between G INDEX and G + P INDEX
	NPV and sensitivity of models
	Application of the G + P INDEX in patients with microhematuria

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

