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Abstract

Background: Assays of molecular biomarkers in urine are non-invasive compared to other body fluids and can be
easily repeated. Based on the hypothesis that the secreted markers from the diseased organs may locally release
into the body fluid in the vicinity of the injury, urine-based assays have been considered beneficial to monitoring
bladder health and urological diseases. The urine proteome is much less complex than the serum and tissues, but
nevertheless can contain biomarkers for diagnosis and prognosis of diseases. The urine metabolome has a much
higher number and concentration of low-molecular metabolites than the serum or tissues, with a far lower lipid
concentration, yet informs directly about dietary and microbial metabolism.

Discussion: We here discuss the use of mass spectrometry-based proteomics and metabolomics for urine biomarker
assays, specifically with respect to the underlying mechanisms that trigger the pathological condition.

Conclusion: Molecular biomarker profiles, based on proteomics and metabolomics studies, reliably distinguish patients
from healthy controls, stratify sub-populations with respect to treatment options, and predict therapeutic response of

patients with urological disease.
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Background

Personalized medicine aims for a customized healthcare
for each patient to match treatments with the right pa-
tients at the perfect timing. Gene-specific data (SNP
genotyping as well as epigenetics) is too static to enable
such timed treatments. It is therefore essential to collect
variable biomarker, along with other clinical information,
data to achieve accurate diagnostic assessment for indi-
vidual patients [1-3]. Multi-omic readouts of cellular
and organ phenotypes (RNA-Seq, proteomics and meta-
bolomics) will be indispensible in the era of personalized
medicine. Only through a combination of exact geno-
typic and molecular phenotypic information we will im-
prove the development of custom and precision
therapies [4—6]. Sub-grouping of patients is necessary to
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define the evidence-based protocol for matching treat-
ments to the right patients with appropriate timing
[5, 7]. The necessity of compiling molecular information
and clinical outcomes in personalized medicine
prompted us to believe that the use of multi-omic data
in conjunction with clinical outcome data is ever more
important not only at the time of medical intervention,
but throughout patients’ lives. The need for and possibil-
ities associated with big data approach to gain insight
into biological processes driving diseases and to identify
novel diagnostics is enlarging. In this review, we will dis-
cuss how far metabolomic and proteomic approaches
have come to aid in this long-term goal.

Urological diseases including urological cancers and
benign bladder dysfunctions are complex in nature and
require powerful, precise treatments. Tests to find pa-
tient candidates for a specific or combination of therapy
and to identify biomarkers are incredibly challenging to
determine [6, 8, 9]. Urine contains information not only
from the urinary track, but also from other organs, pro-
viding biomarkers for bladder and other systemic
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diseases [10—12]. Looking at urine data in conjunction
with other available patient clinical data may enable us
to understand the molecular signature, which helps
monitor the stages of the diseases and responses to ther-
apies. This is particularly true in urological diseases,
where urine samples provide the primary window for
diagnosis and drug behavior observation [13].

A common definition of the proteome is the entire set
of proteins expressed by a cell, tissue or organism at a
certain time. Since proteomics is the large-scale study of
proteome, it can contribute to expanding the under-
standing of biological systems and functions in cells or
organs. Proteomes are directly responsible for cell func-
tions, and therefore, abnormal protein expression is an
indication of cellular disruption due to the pathological
conditions [14, 15]. Current global proteomic technologies
may provide a comprehensive understanding of urological
diseases, characteristics of the disease’s state, and novel
approaches to relieve the clinical symptoms [16-18].

Metabolomics provides a global chemical fingerprint
of the metabolism of cells and indicates physiological
and pathological states of biological samples [19-21].
Thus, the power of metabolomics opens up an unparal-
leled opportunity to query the molecular mechanisms of
the disease. Metabolites are not merely the end products
of gene/protein expression, rather, they are the result of
the interactions of the genome and proteome with their
environment in the cells. They play as powerful mediators
of cellular events both in long-distance actions (e.g. hor-
mones), stress and physiological actors (e.g. oxylipins) [22]
and as cell-internal mediators (e.g. a-ketoglutarate in plur-
ipotency) [23]. Thus, analyzing metabolic differences
between pathological and normal conditions could pro-
vide undiscovered insights into the underlying disease
pathology.

In addition to the advancements in multi-omics data
acquisitions, novel bioinformatics methods enable an inte-
grated view to identify the combined action of biomarkers
as well as to develop drugs [24—27]. A significant volume
of data with various omics data, including genetic, epigen-
etic, transcriptomic, proteomic, metabolomic and clinical
outcome data, provides researchers with the capability to
see a broader perspective and make discoveries that
couldn’t previously be delivered [28-31]. Integrative ap-
proaches have become the essential part of experimental
designs aimed at better understanding the biology of blad-
der diseases.

The main goal of this article is to provide the reader
with an up-to-date summary of the main molecular vari-
ations taking place in biofluids with respect to various
urological diseases including urological cancers (e.g.,
prostate cancer (hereafter PCa) and bladder cancer
(BCa)) and benign bladder dysfunctions (e.g., benign
prostatic hyperplasia (BPH), interstitial cystitis/pelvic
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bladder syndrome, bladder pain syndrome (IC)), as well
as of the analytical strategies employed to unveil urinary
biomarkers.

We here focus on mainly two omics analyses—proteo-
mics and metabolomics—and associated data integration
strategies. These approaches enable researchers to: (a)
identify unknown molecular mechanisms; (b) select
molecular markers that can be used for drug discovery,
preclinical, and clinical drug development; (c) develop
diagnostic tools. First, we present a short review on the
urine-based studies. Second, we discuss analytical tech-
niques that are used in urinary omics analyses, includ-
ing computational methods for data processing. Next,
we present studies that have used proteomics or meta-
bolomics approaches to reveal the fingerprints of
urological diseases. Finally, we discuss the future re-
search directions and prospective how to apply to diag-
nosis and precision medicine for patients to summarize
the review.

Discussion
Urine-based biomarkers for diagnosis, prognosis, or
monitoring the treatment efficiency
A concerted effort bridging basic biology and clinical re-
search is needed to identify high quality predictive bio-
markers [31]. Discovery and validation of predictive
biomarkers should be an integral part of clinical trials.
In the clinical setting, the best diagnostic value is given
by noninvasive biomarker tests that have both high sen-
sitivity and specificity. A non- or minimally invasive
diagnostic method using biofluids (e.g., urine, blood, sal-
iva, fecal extract, and sputum specimens) may play a sig-
nificant role in urological diseases with regard to early
detection, diagnosis, prognosis, drug development, and
sensitivity prediction to clinical treatments [12, 32-34].
So far the most attractive biofluids for biomarker dis-
covery in bladder health and urological diseases are
serum and urine [32-34]. Serum is a relatively access-
ible, stable and informative biofluid, making it ideal for
early detection of systemic alteration in a wide range of
diseases [35, 36]. Monitoring of serum has several ad-
vantages mainly due to its stability and minimum dilu-
tion effect. Proteomic and metabolic profiles of serum
can be regarded as important indicators of physiological
and pathological states and may aid in the understanding
of the mechanism behind disease occurrence and pro-
gression [37-39]. However, blood samples pose certain
disadvantages. During blood sample collection, proteases
are often activated, which degrades proteins quickly and
introduces a range of variability. On the other hand, 20
highly abundant proteins in the blood, which correspond
to 99 % of the proteins, may hinder the identification
of other less abundant, potentially important, proteins
[40-43]. This feature makes it challenging to develop
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plasma or serum based assays and often analytes enrich-
ment or protein depletion is needed.

Urine definitely is not a waste in regards to gaining
patients’ diagnostics and therapeutic information [18, 44, 45].
However, it is still in debate whether urine plays an ac-
tive role in regulating bladder biology. Urine’s compos-
ition is 95 % of water with small amounts of ammonia,
sulfate, and other constituents. Total protein concentra-
tion in urine from healthy donor is very low (<100 mg/L)
and urinary proteome contains over 100,000 different pep-
tides [18, 32, 44, 46, 47]. Approximately 1500 proteins
have been shown to constitute the urinary proteome, of
which large proportions are extra cellular proteins,
plasma membrane proteins, and lysosomal proteins [18,
48]. The Human Kidney and Urine Proteome Project by
the Human Proteome Organization (HUPO) suggested
that urine is an ultra filtration of the blood in the body,
since urine and blood samples share the proteome pro-
file [49-51]. Approximately 30 % of the proteins in nor-
mal human urine are plasma proteins, while the other
70 % are proteins derived from the kidney and genito-
urinary tract [49, 50].

Urine samples usually need special treatments to meet
the requirements of reproducible measurements after
sample collections. To obtain reliable and consistent
profiles of urine, first, urine must be collected in a sterile
bag or plastic container, because urinary bacteria metab-
olism significantly interferes on the urine proteome and
metabolome. Secondly, urine samples must be properly
processed (e.g., pH adjustment and/or removal of cell
debris) and frozen at —-80°C immediately after collection,
until analysis [40, 46]. In addition, analysis of urine sam-
ples poses several analytical challenges for profiling
owing to wide variations in the ionic strength, pH, and
osmolality, particularly under conditions of physiological
stress, diet, exercise, medication, health condition, and
environmental exposure [46, 52, 53]. Furthermore, urine
samples typically have a huge dynamic range of metabol-
ite and protein concentrations. Another potential prob-
lem is the presence of proteolytic activity in the urine by
urokinase and other enzymes [54]. Proteases found in
stored urine degrade urinary albumin to a substantial
degree. However, the extent to which proteases affect
biomarkers in the urine is still unclear.

Despite all these shortcomings, urine is still an attractive
source for studying bladder diseases. To monitor bladder
condition, urine-based assays present the most attractive
strategy, among other biofluids-based methods, given that
the body fluids that are most proximal to a disease site
often can provide a source of informative biomarkers.
Urine is readily obtained and available with no required
preparations by the patient and it is less complex than
other body fluids. The ease of collection allows for serial
sampling to monitor disease and therapeutic responses.
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Care must be taken in interpreting urine-based proteo-
mics and metabolomics data. The main disadvantage of
urine is the variation in protein concentration due to dif-
ferences in fluid consumption during the day, which can
be countered by normalizing with creatinine. However, al-
though creatinine is the best possible internal standard for
correcting urine volume effects, creatinine levels can vary
due to dietary intake and pathological conditions. Compu-
tational approaches for data normalization methods can
be applied to reduce artifacts due to sample variability
using currently developed probabilistic quotient- and
median-fold changes in normalization strategies [55].

Analytical techniques and databases for urine-based
omics for bladder diseases

With the latest advances in high-throughput technologies,
the pace of advances in the “omics” field accelerated the
rate of novel biomarker discovery and therapeutic targets
for various bladder diseases. Various omics technologies
for personalized medicine are shown in Fig. 1, and ideal
applications and workflow of urine-based biomarkers in
clinical settings are shown in Fig. 2.

Proteomic technology has made a dramatic progress
in the overall quality and information content over the
past 5 years [56]. When computationally matching iden-
tified proteins (or metabolites) against knowledge-based
databases, proteomics or metabolomics profiles today
provide direct insights for biological interpretation of
molecular perturbations unique in patients with uro-
logical diseases [47, 57, 58]. In this section, we review
the current proteomic and metabolomic techniques and
analytical tools/softwares that are used to identify signa-
tures of urological diseases.

Genome and Epigenome

Phenotyping

B

Personalized Medicine

Transcriptome
Metabolome

Proteome

Fig. 1 Overview of multi-omics technologies, which can be applied
to urine-based biomarker study
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Fig. 2 Potential clinical application using urine-based biomarkers

Urinary proteomics studies

Proteins are the major players influencing a person’s
health, since proteins frequently have the greatest clinical
significance for the diagnosis of diseases. Studies in the
field of proteomics aim to elucidate proteomes and under-
stand the identity, quantity, modification, localization,
interaction, and function of all proteins in a given cell type
or tissue. A number of powerful proteomic technologies
were developed, demonstrating that proteomic approaches
have wide utility [59, 60]. Proteomics profiling enabled the
comparing of protein differences between patients suffer-
ing from a wide range of ailments and healthy controls to
discover biomarkers for diagnosis and monitoring treat-
ment response [49, 56]. Further developments to under-
stand the post-translational modifications (PTMs) in
tissues and biological fluids from patients have been
achieved through the development of mass spectrometry
instrumentation with increasing sensitivity [61, 62]. Estab-
lished protocols for PTM enrichment and pipelines for
high-throughput assays for clinical specimens may provide
the potential of automated and large-scale identification
and quantification of PTM-ome and its biological role in
diseases [63].

For urine proteomics, many mass spectrometry tech-
niques, such as 2D PAGE-mass spectrometry (MS), liquid
chromatography-mass spectrometry (LC-MS/MS), capil-
lary electrophoresis-mass spectrometry (CE-MS), surface-
enhanced laser desorption/ionization time-of-flight mass
spectrometry (SELDI-TOF MS), matrix assisted laser de-
sorption/ionization time-of-flight (MALDI-TOF) MS and
nano-liquid chromatography-tandem mass spectrometry
(Nano-MALDI-MS) have been used with some advantages
and limitations [64—68]. We described here only a few
analytical tools that highlight the usefulness of it for urin-
ary proteomics research. Briefly, 2D PAGE-MS is time
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consuming and technically challenging but very effective
for large molecules. LC-MS is also time-consuming but
pretty sensitive. CE-MS is cheap and good for biomarker
discovery. MALDI-TOF MS is relatively simple, inexpen-
sive, and, thus, a good option for fast screening. In general,
nano-MALDI-MS is known to be much more sensitive
than MALDI-TOF MS [64].

The gel-based 2-DE method enables urinary proteins
to be resolved based on their molecular weight and iso-
electric point. Several tools for image noise subtraction,
protein spot detection, spot quantification, and spot
matching can be used for 2-DE analysis including Mel-
anie, ImageMaster2D, and PDQuest et al. The main
steps in differential analysis of 2DE gels involve and stat-
istical analysis. Often, the 2-DE method is coupled with
MALDI-TOF MS or LC-MS/MS. Peptides from protein
spots of interest are mixed with a matrix (e.g, a-cyano-
4-hydroxycinnamic acid) solution and are spotted onto a
MALDI plate and analyzed with a MALDI-TOF MS to
identify a peptide-mass fingerprint. These peptides can
also be analyzed with nanoLC-MS/MS to sequence each
peptide and thus identify the protein.

Besides identification and characterization, urine pro-
teins can also be quantified. Today, label-free proteomics
is the primary approach to relative quantifications of the
human urinary proteome [69, 70]. A major advantage of
label-free quantification is that this method is cheaper,
simpler and involves less complicated data analysis than
isotope-labeled approaches. Data processing is often per-
formed by softwares such as Decyder MS, Protein Lynx,
SIEVE, and skyline [71]. However, label-free quantifica-
tion is limited by its lower quantification accuracy (espe-
cially for spectral counting in data dependent scan
methods), and label-free data dependent acquisition
quantifications are generally results in the identifications
of less proteins and poor reproducibility. Currently
SWATH and other data independent mass spectrometry
acquisition methods and several computational algo-
rithms are tested in their potential to overcome these
limitations [59, 69, 70, 72].

The use of the most advanced proteomics mass spec-
trometry technologies has allowed discovering and veri-
tying several urinary biomarkers of bladder diseases. In a
large proteomics study, 407 patient urine samples were
analyzed using MALDI-TOF MS. Two markers, uromo-
dulin and semenogelin, could distinguish PCa versus
BPH with 71.2 % sensitivity and 67.4 % specificity [9]. In
another study on prostate cancer (PCa), capillary electro-
phoresis was coupled with MS detection of proteins and
was able to identify and validate 12 novel urinary bio-
markers for PCa [73]. This report suggested that collect-
ing mid-stream urine samples was uninformative, but that
first void urine was able to identify patients with PCa with
91 % sensitivity and 69 % specificity [73]. Due to its
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limited size, this study certainly requires additional valid-
ation in a larger cohort. In general, it can be assumed that
a panel of biomarkers will most likely achieve an overall
high level of specificity and robustness than using a single
urinary protein biomarker. Further development of quan-
titative proteomics and selective or multiple reaction
monitoring (SRM/MRM) methods [74—76] may allow the
protein-quantification data to stand by their own without
redundant validation using traditional protein quantifica-
tion methods such as Western blot and ELISA. In many
cases, there is no antibody available, and the capability of
measuring multiple biomarkers in a panel for immune-
based assays is very limited.

Urinary metabolomics studies

Metabolomic profiling, or metabolomics, is the systemic
study of the unique small chemical fingerprints in a bio-
logical sample, and is the collection of small-molecule
profiles that represent the end products of cellular pro-
cesses in biological systems (e.g., cells, tissues, or organs)
[20, 77]. As little as 5 ul of plasma or urine allows the
characterization of hundreds of metabolites that provide
a functional readout of the metabolic state. A recent ef-
fort to characterize the metabolomes of human urine
has completed to identify and annotate approximately
2500 urinary metabolites using nuclear magnetic reson-
ance spectroscopy (NMR, in most cases 'H-NMR), gas
chromatography mass spectrometry (GC-MS), direct
flow injection mass spectrometry (DFI/LC-MS/MS), in-
ductively coupled plasma mass spectrometry (ICP-MS)
and high performance liquid chromatography (HPLC)
[78]. The detailed information of metabolite structures,
concentrations, related literature references and disease
associations is publically available via an online database
(http://www.urinemetabolome.ca) [77]. Urinary metabol-
ite levels are usually standardized by creatinine concen-
trations. Endogenous substrate levels in normal healthy
subjects can inform on the status of each subject’s me-
tabolizing enzyme activities. The comparison of urinary
metabolite levels of patients vs. healthy controls, and re-
sponders vs. non-responders to a particular drug should
facilitate the development of useful biomarkers to diag-
nose the disease or to predict the response, respectively.
Also, understanding of urinary metabolome in healthy
condition may help the titration of drug dose and moni-
toring drug response [18, 77].

Metabolomic studies typically begin with sample col-
lection followed by sample analysis. A number of analyt-
ical techniques including NMR spectroscopy, GC-MS,
and liquid chromatography-mass spectrometry (LC-MS)
are used as methods of analysis [19]. NMR spectroscopy
has proven to be particularly good for urine metabolomics
analysis, because the technique is highly reproducible, re-
quires minimal sample handling, and is straightforward to
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implement [79]. While the reproducibility, quantitative
ability, and structure information derived from the NMR
methods are big advantages, the relatively lower sensitivity
and less straightforward identification methods are disad-
vantages of the NMR method [79]. MS-based metabolo-
mics is considered more sensitive, providing greater
coverage, and to be more cost-efficient than NMR-based
applications. Given that the coverage varies with different
technologies and instruments, the combination of differ-
ent metabolomic approaches may provide a broad range
of information that covers the metabolite profile and may
maximize the capability of metabolomics analysis [19-21].

For metabolomics data processing, several statistical
tools are currently used to analyze NMR and MS-based
metabolomics datasets (e.g, MS-DIAL [80], XCMS,
MZmine, MetAlign, MathDAMP, and LCMStats) [81, 82].
As metabolite databases, the Human Metabolome Data-
Base (HMDB), Madison Metabolomics Consortium Data-
base, METLIN, and LipidMaps are generally used. To
further understand the biology of the identified metabo-
lites, HMDB (http://www.hmdb.ca/), METLIN (http://
metlin.scripps.edu/), MassBank (http://www.massbank.jp),
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and KEGG
(http://www.genome.jp/kegg/) can be used.

There is an increasing awareness of standardization or
careful accounting in experimental design of urinary
metabolomics study. To overcome possible limitations
and pitfalls of the metabolomics approach, specific rec-
ommendations for urine collection, sample handling,
storage, data acquisition, and statistical validation are
also needed [78].

Urinary extracellular vesicle-derived omics studies

Most cells including cancer cells shed different types of
vesicles into extracellular environment [83]. These vesi-
cles are so-called extracellular vesicles (EV) including
microvesicles, exosomes, and oncosomes, which are
named based mainly on their size and characteristics
[84]. EV have an increasing attention in the field of bio-
marker discovery. Given that EV are membrane bound
structures, the components should be protected from deg-
radation by extracellular proteases, DNAse and RNAse. A
possibly selective package process during EV formation
and shedding may lead to the reduced complexity of the
contents [83, 84].

EV were originally considered a cleaning system to
trash away the unnecessary molecules from cells. How-
ever, accumulated evidence demonstrates that EV influ-
ence their microenvironments by altering signaling
pathways and delivering genetic information to other
cells within close proximity [85-88]. Today, EV are ac-
cepted as potent mediators of cellular communication
and as selectively packed delivery vehicle, which can
provide clues to EV biogenesis, targeting, and cellular
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effects [87-89]. EV may also be used as a source of bio-
markers for disease diagnosis, prognosis and response to
treatment [89, 90]. Since EV can be readily isolated from
multiple biological fluids (e.g., urine, serum, plasma,
pleural effusion and saliva et al.), they have been consid-
ered to contain non-invasive biomarker candidates. In
some pathological conditions including urological cancers,
EV are easily secreted into the urine, and the urinary
EV contain rich molecular information specific to the
disease conditions such as cytoplasmic RNAs, miR-
NAs, metabolites and proteins [91]. Several disease-
associated proteome were identified in urine from pa-
tients. Since EV-based urinary biomarkers are cell-free
and do not rely on the presence of shed cells, urine
provides a promise for the easy detection of bladder
diseases [92, 93].

Unfortunately, there is no gold-standard technique for
enriching and isolating EV in the clinical practice [94].
Nevertheless, several techniques have been developed to
enrich and isolate urinary EV. This section discusses the
different methods used to isolate urinary EV. Before iso-
lating EV, it is advised to remove well-known abundant
proteins in urine (e.g., uromodulin) [95]. Step-wise dif-
ferential ultracentrifugation including low speed and
high-speed centrifugation, and immuno-affinity and
peptide-based isolation methods can be applied. The so-
called Vn-96 peptide, based on surface marker of EV,
was introduced to capture EV from biological fluids in-
cluding urine. ExoQuick-TC™, Exospin™, and miRCURY™
EX isolation kits are based on aggregating agents
followed by a low-speed centrifugation. Size-exclusion
chromatography was also introduced to fractionate urine
samples and isolate EV. Exochip™, a microfluidic-based
method, has been recently shown to isolate EV. In par-
ticular, the hydrostatic dialysis method is efficient to en-
rich EV from highly diluted samples with molecular
weight cut-off of 1000 kDa [94]. After omics analysis is
done using EV isolated from urine samples, data can be
analyzed using three major publically accessible EV-
associated databases, EVpedia, ExoCarta, and Vesiclepe-
dia [71, 96].

Because the variable results have been obtained with
different isolation techniques, further discussion on the
standard protocols for EV isolation, and normalization
problem, which are major obstacles for the quantitative
omics studies of EV, will be needed to apply this inter-
esting biological resource into clinical practice.

Computational approaches to integrate data for better
knowledge extraction

Using all information available from a wide variety of
sources, including behavioral, genomic and life-style data
has been coined “Big Data”. In clinical research, Big Data
approaches show promise to connect information for
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individualized therapy approaches, called Personalized
Medicine, once Big Data Initiative has been shown to
lead to new scientific insights to better understand the
biology [4]. Omics studies generate long lists of inter-
connected genes, proteins and metabolites, which may
be integrated in clinical settings via computational ap-
proaches [18, 21, 28, 75]. The systems approach, inte-
grating multi-omics, data will increase the reliability of
discovering biomarkers and development therapeutic
strategies for bladder diseases.

Currently available tools for integrating omics data
can be categorized (i) to identify parameters of disease-
associated biological networks and (ii) to identify
pathway-based targets. Computational methods and tools
for identification of important molecular targets and bio-
marker candidates are summarized. The major network-
based visualization tools include VANTED (https://immer-
sive-analytics.infotech.monash.edu/vanted/), VisAnt
(visant.bu.edu/), Metscape2 (metscape.ncibi.org/mets-
cape2/), Arena3D (arena3d.org/) and MetaMapR [97]. In
order to construct a disease-perturbed network, several
softwares and integrative querying systems for interaction
information (PSICQUIC), network modeling and analysis
tools (STRING [98] and Cytoscape [99]), and pathway ana-
lysis (KEGG [100]) might be useful. Commercial tools (e.g.,
GeneGo and Ingenuity Pathway Analysis (IPA)) are also
helpful to construct a network. For pathway visualization,
various tools are available, including Pathguide
(www.pathguide.org/), KEGG-based pathway visualization
tool (www.genome.jp/kegg/pathway.html), Paintomics
(www.pantomics.com/), ProMeTra (https://www.cebite-
c.uni-bielefeld.de/polyomics/index.php/comics-software/
75-prometra/), KaPPa-View (kpv.kazusa.or.jp/), MapMan
(mapman.gabipd.org/), MAYDAY, and PaVESy (pavesy.m-
pimp-golm.mpg.de/). Based on the biochemical activities
extracted from experimental datasets, interactive pathways
can be constructed [101].

Importantly, in order to extract biological knowledge
and to perform successful data integration across mul-
tiple resources, it is always essential to understand the
context of the biology. Most current approaches, maybe
with the exception of the Ingenuity Pathway analysis,
are ignorant of disease etiologies and common patho-
logical information that are very well known to clinical
scientists. Hence, it is critical that scientists using path-
way or genomic software are aware of this pitfall and
use such network analyses only as additional tool to
structure data and information, but not to expect im-
mediate understanding. Only under careful interpret-
ation of clinical knowledge and scientific literature can
Omics data and software provide new hypotheses on
undiscovered biological pathways and processes, even-
tually allowing us to personalized care and therapies on
bladder diseases.
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Potential biomarkers of bladder diseases

Next, we review the current state of proteomics and
metabolomics in conjunction with recent technical ad-
vances in mass spectrometry in this section. The key ap-
plications and achievements by urinary proteomics and
metabolomics in clinical biomarker research are dis-
cussed. Focus will be given to PCa, BCa, BPH and IC
among other urological diseases. Examples of urine—
based biomarkers suggested by previous studies are
shown in Fig. 3.

Urinary biomarkers for prostate cancer

As the second most prevalent cancer in men, PCa’s inci-
dence reaches 899,000 new cases and 258,000 deaths per
year [102]. One of the gold standard diagnostic tools for
PCa progression detection is the measurement of pros-
tate specific antigen (PSA) in serum [102].

There have been many proteomic approaches to iden-
tify the urine-based biomarkers of PCa. For example, a
large study using urine samples from 591 patients re-
ported Annexin A3, a calcium-binding protein that plays
a role in the regulation of cellular growth and in signal
transduction pathways, as a novel urine-based biomarker
for early PCa detection when used in conjunction with
PSA [103]. Using CE-MS, 12 urinary biomarkers for
PCa, including sodium/potassium-transporting ATPase
Y, collagen a-1(III), collagen a-1(I), psoriasis susceptibil-
ity 1 candidate gene 2 protein, hepatocellular carcinoma
associated protein TB6, histone H2B, osteopontin, poly-
meric Ig receptor, transmembrane secretory component,
prostatic acid phosphatase, fibrinogen a chain precursor,
and semenogelin 1, were identified and validated (91 %
sensitivity and 69 % specificity) [104].

These findings strongly suggest that the use of a panel
of biomarkers for disease diagnosis rather than a stand-
alone biomarker, which may not be as specific, would
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benefit to diagnostic precision. However, unfortunately,
currently none of these urinary protein biomarkers have
been introduced into clinical practice, since current
diagnostic biomarkers are suboptimal and of poor utility
for low-grade disease and surveillance. To become rou-
tine tests, these biomarker candidates should be carefully
tested in multicenter clinical trials and should be mea-
sured in biological fluids by robust, standardized analyt-
ical methods.

For development of metabolite markers, both LC-MS
and GC-MS methods were applied to profile various
clinical samples (including tissues, urine, and plasma)
from PCa patients and identified 87 metabolites that dis-
tinguished PCa from normal subjects [105]. This study
suggested that an interesting urinary metabolite, sarco-
sine (N-methylglycine), associates with PCa progression
to metastasis with significant predictive value [105]. A
following nested case control study showed that urinary
sarcosine (and cysteine) levels were significantly higher
in 54 PCa patients who had a recurrence after treatment
[106]. However, another follow-up study done using an
independent cohort of 106 PCa patients failed to repro-
duce the ability of urinary sarcosine (normalized to cre-
atinine) as a PCa biomarker [107]. It is certainly possible
that sarcosine may serve only as cell-internal signal, and
not be excreted or shed into biofluids.

In addition, several cell-free and exosome-derived
urinary microRNAs were suggested as PCa biomarkers
[43]. The following reports provided evidence that circu-
lating miRNAs might be a next-generation biomarker
and contribute to cancer screening in non-invasive li-
quid biopsy. Only few studies for PCa-associated miRNA
in urine were reported. Five of the miRNAs were differ-
entially quantified in PCa patients compared to controls
(miR-107, miR-574-3p, miR375, miR200b and miR-141)
in urine of men with cancer, compared to that of healthy

~

| Sarcosine

Annexin A3

SAA4
ProEGF

PCA3
RNA.57

miR-107, miR-574-3p, miR375, miR200b
and miR-141 et al.

palmitoyl sphingomyelin, lactate,
gluconate, adenosine, 2-
methylbutyrylglycine and

‘ guandinoacetate et al.

APOA1, APOA2, APOB,
APOC2, APOC3, and APOE et al.

TMPRSS2:ERG fusion

ATPase y, collagen a-1(lll), collagen a-
1(1), psoriasis susceptibility 1 candidate
gene 2 protein, hepatocellular carcinoma
associated protein TB6, histone H2B,
osteopontin, polymeric Ig receptor,
transmembrane secretory component,
prostatic acid phosphatase, fibrinogen a
chain precursor, and semenogelin 1 et al.

Fig. 3 Examples of urine-based proteomic and metabolomic signatures of urological diseases
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volunteers [108]. Among them, two miRNAs (miR-141
and miR-375) were also found higher in the PCa patient
blood [108]. In the case of miR-141, the urinary levels
were approximately 50 fold higher in metastatic PCa pa-
tients, compared to the healthy controls. Nilsson et al.
found that exosomes were carriers for the TMPRSS2:ERG
fusion, which is an early molecular event associated with
PCa invasion, and PCA3 RNA.57, which were originally
found as PCa biomarkers in prostate tissues [108].

Recently we also found interesting urinary miRNAs in-
cluding virus-encoded miRNAs, which are specific to
PCa, suggesting that this miRNA panel can be usable for
the clinical setting [88]. This miRNA panel showed
much better specificity and sensitivity to PSA for the
early PCa patients whose serum PSA levels are undetect-
able [88]. In addition to RNA detection, proteomic pro-
filing of exosomes and EV in human urine is underway
and may lead to new biomarker development for a var-
iety of diseases, including urological cancers and other
benign diseases, with a hope of the potential use of EV
as reservoirs of disease biomarkers.

Urinary biomarkers for bladder cancer

Urinary bladder cancer (BCa), the fourth most common
cancer worldwide, is a significant cause of morbidity and
mortality with a high recurrence rate [109]. For a follow-
up surveillance, the diagnostic methods have been
mostly instrumental in approaches including cystoscopy
and cytology, which are painful and invasive. Thus, the
molecular assays in a non-invasive fashion are needed
for BCa patient surveillance at an early stage. High-
throughput proteomic profiling technologies will identify
molecular signatures that are associated with BCa, and
will provide us understanding on bladder cancer biology,
eventually leading to the development of targeted thera-
peutics [57, 110].

The complementary techniques of high-resolution MS
and Western blotting/dot blot were able to quantify the
urinary proteome specific to NMIBC. 29 proteins had a
significantly higher abundance (p <0.05) in urine sam-
ples of NMIBC compared with matched controls [111].
Another MS analysis using a Bruker Ultraflextreme
MALDI-TOEF-MS revealed that the urine peptidome was
associated with MIBC [57, 112]. Using hexapeptide-
based library beads and an antibody-based affinity col-
umn using the iTRAQ technique, six apolipoproteins
(APOA1, APOA2, APOB, APOC2, APOC3, and APOE)
were suggested as BCa-associated urine proteins [112].
In this study, SAA4 and ProEGF were also significantly
altered in BCa subgroups [112]. The combined signa-
tures of SAA4 and ProEGF were demonstrated to have a
good diagnostic capacity (AUC =0.80 and p <0.001) on
BCa [112]. The other urine proteomic study using 2-DE
MS demonstrated the increased level of urinary

Page 8 of 13

apolipoprotein-Al (Apo-Al) in BCa patients compared
to control subjects. Additional validation assays (n = 379)
supported that Apo-Al could be used as a BCa bio-
marker with a sensitivity and specificity of 89.2 and
84.6 %, respectively [113].

An unbiased global metabolomic profiling using high-
performance liquid chromatography-quadrupole time-
of-flight mass spectrometry (HPLC-QTOFMS) profiled
urine metabolites of BCa patients and controls. Compre-
hensive data analyses suggested 12 differential metabo-
lites that contributed to the distinction between the BCa
and control groups with a great sensitivity (91.3 %) and
specificity (92.5 %) (AUC=0.937) [114]. Interestingly,
BCa-associated urinary metabolomes are enriched in
glycolysis and beta-oxidation [114]. Recent urine meta-
bolic profiling was performed on two subject cohorts
with and without BCa in three independent platforms,
which include ultrahigh-performance liquid chromatog-
raphy/tandem mass spectrometry (UHPLC-MS/MS) in
the negative ion mode, UHPLC-MS/MS in the positive
ion mode, and GC-MS. As a set of candidate biomarkers
for bladder cancer, 6 biomarkers (palmitoyl sphingomye-
lin, lactate, gluconate, adenosine, 2-methylbutyrylglycine
and guandinoacetate) were suggested [115].

There is no study on urine exosome-derived miRNA
signature associated with BCa, however, exosome prote-
omics studies demonstrated exosomes were highly puri-
fied from cultured BCa cells. Using ultracentrifugation
on a sucrose cushion, Western blotting and flow cytome-
try of exosome-coated beads, 18 urine exosome proteins
(e.g., basigin, galectin-3, and trophoblast glycoprotein
(5 T4) et al.) were identified and validated [116], suggest-
ing that exosomes in urine are a highly stable resource of
biomarkers for BCa.

Urinary biomarkers for BPH

Incidence of benign prostatic hyperplasia (BPH), the
most common benign disease among men, is known to
be associated with age. Since BPH patients have similar
symptoms to those of PCa patients, there have been
diagnostic challenges in clinical settings.

The urine proteome-based method for discrimination
of BPH from high-grade prostatic intraepithelial neopla-
sia or PCa was developed through testing 407 patient
samples using MALDI-TOF [73]. Recently performed
urinary proteome profiling of men with BPH vs. PCa
using iTRAQ LC/LC/MS/MS have identified 25 proteins
that were differentially expressed in urines [73]. Three
proteins, f2M, PGA3, and MUC3, were further validated
by western blot analysis. The combination of these three
proteins showed an AUC of 0.710 (95 % CI: 0.631—
0.788, P<0.001) and enhanced a diagnostic accuracy
when combined with PSA (AUC=0.812, (95 % CI:
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0.740-0.885, P<0.001), suggesting a useful biomarker
candidate panel segregating BPH from PCa [9].

Urinary biomarkers for IC

IC is a chronic bladder syndrome with bladder pain,
urinary frequency/urgency, pressure, discomfort, and
nocturia, which cause the suppressed physical function
and social activity and adverse impact on the quality of
life [117-119]. Approximately 1 out of 77 people in the
United States have been diagnosed with IC. There is no
gold standard for IC diagnosis. Objective diagnostic
markers are urgently needed to improve prospects for
clinical care. Etiologies of IC remain unknown. Prescrip-
tion of medications has not been clearly suggested in
clinical settings. Thus, there is a clear clinical need for
the identification of biomarkers of IC.

The urine-based omics approaches to identify IC diag-
nostic markers have been employed. A small glycosylated
peptide, antiproliferative factor (APF) was found in urine
samples derived from IC patients [120]. Urinary APF bio-
activity could segregate IC patients from controls (94 %
sensitivity and 95 % specificity). The following global and
unbiased quantitative proteomics combined with bioinfor-
matics analysis performed by our group has enabled us
to reveal the in vitro APF signaling network [121, 122].
Additional proteomics profiles associated with IC were
suggested by studies using various technologies. Using
2-DE and MALDI-TOF, urine samples from 9 IC patients
and 9 asymptomatic controls were analyzed, and the pro-
teins such as uromodulin, kininogens (precursors of kinin)
and inter-a-trypsin inhibitory heavy chain H4 were signifi-
cantly altered in urine samples of IC patients [123]. A
study by Kuromitsu et al. suggested that neutrophil elas-
tase is significantly higher in IC subset with bladder pain
and small bladder capacity than in other IC patients and
healthy controls by using the 2D-DIGE nanoLC-MS/MS
[124]. Another urinary proteome identified by Goo et al.
revealed that o-1B-glycoprotein, orosomucoid-1, trans-
thyretin and hemopexin were altered in 60 % of IC pa-
tients compared to controls [125].

A few attempts to use metabolomics analysis to iden-
tify an IC signature have suggested promising metabolite
signatures specific to IC. Fukui et al. used ultra-
performance liquid chromatography-mass spectrometry
(UPLC-MS) and found that the urinary ratio of phenyla-
cetylglutamine to creatinine can be correlated to the
clinical grade of IC (e.g. mild to severe based on symp-
toms) [126]. A report from Van et al. has suggested that
IC patients exhibited distinct MS and NMR spectral pat-
terns from non-IC patients [127]. With follow-up studies
in a larger cohort, global metabolite profiling combined
with multivariate statistical and bioinformatics analysis
may validated some of these compounds as important
biomarker metabolites contributing to the biological
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responses, such as the drug-induced toxicity, or response
as metabolic biomarkers.

Conclusion: concluding remarks and perspectives
In this short review, we have provided information on
the current state of ‘omics’ studies and available data
sets relevant to bladder health and pathological condition,
and presents opportunities for new research directed at
understanding the pathogenesis of this complex condition.
We believe that the ultimate goals of urine profiling of
proteome and metabolome should be (i) to identify non-
invasive diagnostic and prognostic biomarkers of bladder
diseases, (ii) to better understand the biology of bladder
diseases, and (iii) to determine the therapeutic strategies
targeting the critical pathways of various bladder diseases.
Recent efforts in the generation of large genomics, tran-
scriptomics, proteomics, metabolomics, and other types of
‘omics’ data sets have provided a series of urinary bio-
marker candidates of bladder diseases. In spite of much
efforts to identify candidate urinary biomarkers, it is still
required to validate such markers in larger numbers of
urine samples using targeted proteomics and metabolo-
mics analyses in a prospective way.

Diagnostic and treatment modalities, even subjective
diagnostic tools, are largely unavailable. As described
here, our attempts to perform a systematic review and
to build a pooled database using existing public ‘omics’
data associated with bladder health and various patho-
logical conditions revealed the significant limitations and
challenges facing investigators in the field. Many reports
have suggested that natural diversity of patient popula-
tion clearly plays a role in the difficulty of validating
urine biomarkers. Expanding tests to include the general
population often leads to loss or decrease in sensitivity.
However, if tests are used for patients presenting specific
symptoms in the clinic, and not for the general popula-
tion, to inform about prognosis or treatment options,
the pitfalls of general-population based urinary bio-
markers may be alleviated. However, the cost of develop-
ing and validating a clinical grade assay is clearly beyond
regular laboratory funding and would require concerted
efforts by health agencies.

Collectively, despite these numerous pitfalls, urine is an
interesting source of biomarkers for monitoring the blad-
der health. Rather than a single urinary molecular bio-
marker, a panel of biomarkers may be required to achieve
the overall high level of specificity needed, so the trend is
shifting towards implementing a panel of biomarkers,
which may increase specificity. In order to translate poten-
tial biomarkers to clinical practice, vigorous validation
must be pursued, with input from industry or large collab-
orative studies. Computational approaches combined with
high quality ‘omics’ data could provide new insights in
the field, essential molecular details about regulatory



Chen and Kim BMC Urology (2016) 16:11

mechanisms and perturbations leading to bladder dis-
eases, and essential information if we are to offer im-
proved diagnostic capability and treatment strategies
for patients.
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