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Abstract 

Background:  An accurate prediction model could identify high-risk subjects of incident Overactive bladder (OAB) 
among the general population and enable early prevention which may save on the related medical costs. However, 
no efficient model has been developed for predicting incident OAB. In this study, we will develop a model for predict-
ing the onset of OAB at 5-year in the general population setting.

Methods:  Data will be obtained from the Nagahama Cohort Project, a longitudinal, general population cohort study. 
The baseline characteristics were measured between Nov 28, 2008 and Nov 28, 2010, and follow-up was performed 
every 5 years. From the total of 9,764 participants (male: 3,208, female: 6,556) at baseline, we will exclude partici-
pants who could not attend the follow-up assessment and those who were defined as having OAB at baseline. The 
outcome will be incident OAB defined using the Overactive Bladder Symptom Score (OABSS) at follow-up assess-
ment. Baseline questionnaires (demographic, health behavior, comorbidities and OABSS) and blood test data will be 
included as predictors. We will develop a logistic regression model utilizing shrinkage methods (LASSO penalization 
method). Model performance will be evaluated by discrimination and calibration. Net benefit will be evaluated by 
decision curve analysis. We will perform an internal validation and a temporal validation of the model. We will develop 
a web-based application to visualize the prediction model and facilitate its use in clinical practice.

Discussion:  This will be the first study to develop a model to predict the incidence of OAB.
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Background
Overactive bladder (OAB) is defined as “a symptom 
characterized by urinary urgency, with or without 
urgency incontinence, usually with urinary frequency 

and nocturia in the absence of infection or other obvi-
ous pathology” [1]. The prevalence of OAB is estimated 
from 10 to 20% and increases with age [2–4]. OAB 
might significantly decrease the HRQOL in patients [5] 
and increase the expenditure of medical cost [6]. The 
prevalence of OAB is increasing in an aging society and 
the negative impacts on HRQOL and medical cost are 
becoming even more serious.
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Population-based prediction models would be help-
ful for population health planning and policy decision-
making [7]. The same is expected for OAB prediction 
model because some good behaviors, such as healthy eat-
ing habit, keeping healthy weight, quitting smoking and 
pelvic floor muscle exercise, are efficient for keeping the 
bladder as healthy as possible [8]. If an accurate predic-
tion model can be developed, high-risk subjects could 
be identified and encouraged to such good habits at an 
early stage, which might prevent incident OAB and save 
on the medical cost related to pharmacotherapy. If such a 
model could be made freely available to the general pub-
lic online and encourage good habits for a healthy blad-
der, it could change user’s behavior to prevent incident 
OAB and impact on health care providers within clinical 
practice guidelines to inform decision making in the clin-
ical setting. However, to our knowledge, no model has 
been developed to predict the new-onset of OAB in the 
literature. This could be due to lack of sufficient data to 
develop such a prediction model in terms of sample size, 
retrospective study design, and/or important predictors. 
We have recently reported longitudinal analyses of void-
ing dysfunction using a large prospective cohort data 
from the general population [9, 10]. These data can be 
used to develop an adequate model to predict new-onset 
OAB in the general population.

In this study, we will use a large prospective Japanese 
general population cohort to develop a model to predict 
the new-onset OAB at 5-year. We will develop a model 
consisting of only questionnaires and will compare the 
performance with another model including blood test. If 
the performance of the two models is deemed to be com-
parable, we will choose the model without blood testing, 
aiming to make the model more easily accessible, even 
by the general population. As the mechanism of inci-
dent OAB could be different between male and female 
due to factors such as the prostate gland, menopause and 
delivery, we will develop separate models for each sex. In 
addition, we will develop a web-based application to visu-
alize the results interactively.

Methods/design
We will follow the Transparent Reporting of a Multivari-
able Prediction Model for Individual Prognosis or Diag-
nosis (TRIPOD) checklist for developing and validating 
our prediction model [7].

Study design and source of data
We will use the Nagahama cohort [4, 9, 10], a prospec-
tive population-based cohort study in the Nagahama 
city, a Japanese rural city of 125,000 inhabitants. Recruit-
ment was performed between Nov 28, 2008 and Nov 28, 
2010, and the baseline characteristics were measured. 

Follow-up was performed every 5  years after baseline 
assessment, and the follow-up assessment was performed 
between July 28, 2013 and Feb 10, 2016. The cohort study 
was approved by the ethics committee of Kyoto Univer-
sity Graduate School of Medicine (no. G278) and by the 
Nagahama Municipal Review Board. Written informed 
consent was obtained from all participants.

Study population
Participants were recruited from the general commu-
nity residents of Nagahama city. Inclusion criteria were 
as follows: age 30–74 years; ability to independently par-
ticipate in health examinations; no difficulties in com-
municating in Japanese; no serious diseases, symptoms, 
or other health issues; and voluntary participation. From 
the total 9764 participants (male: 3208, female: 6556) 
at baseline, we will exclude 1475 participants who did 
not attend the follow-up assessment because of death 
(n = 137), moving from Nagahama City (n = 279) or some 
other unknown reason (n = 1059). From the 8289 follow-
up participant, we will exclude 912 OAB participant and 
2 missing data of OAB at baseline, and 7375 participants 
(male: 2289, female: 5086) will be used in this analysis. 
The study flow chart is shown in Fig. 1.

Study outcome
The outcome will be new-onset OAB at 5-year follow-up 
assessment. We will use OABSS, a self-report measure 
assessing of urinary urgency validated by Homma et  al. 
[11]. The questionnaire consists of the following items: (i) 
How many times do you typically urinate from waking in 
the morning until sleeping at night? (ii) How many times 
do you typically wake up to urinate from sleeping at night 
until waking in the morning? (iii) How often do you have 
a sudden desire to urinate, which is difficult to defer? (iv) 
How often do you leak urine because you cannot defer 
the sudden desire to urinate? OAB will be defined as a 
total OABSS score ≥ 3, with an urgency score (iii) ≥ 2 
[11]. The number of new-onset OAB at follow-up assess-
ment will be 224 for male and 290 for female.

Sample size calculation
We calculated the minimum sample size needed to build 
a prediction model using the criteria recommended by 
Riley et  al. [12]. For these calculations it is required to 
provide an expected R2 value. As there has been no pre-
diction model of incident OAB previously, we have set 
R2 = 0.10 as a conservative choice in this study. Based 
on the number of events in our dataset (224 male, 290 
female) and the selected value for R2, we calculated the 
upper limit of the number of predictors to be 27 for the 
model for males and 35 for females.
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Candidate predictor variables
Based on previous reports [13–18] and expert opinion, 
we will initially include in the mode the following candi-
date predictors variables which were measured at base-
line; demographic variables (age, body mass index [BMI], 
delivery, menopause, smoking status, alcohol habit, walk-
ing habit), history of comorbidities (hypertension, hyper-
lipidemia, diabetes, ischemic heart disease, stroke, kidney 
disease, cancer, depression, sleep disturbance, obstructive 
sleep apnea [OSA], benign prostate disease and prostate 
cancer [PCa]), questionnaires specific to OAB (OABSS 
question 1, question 2, question 3 and question 4) and 
blood test (HbA1c, B-type natriuretic peptide [BNP], the 
estimated glomerular filtration rate [eGFR]) and prostate 
specific antigen [PSA]). Trained physicians and research 
assistants administered the standardized questionnaire 
in which participants provided clinical background infor-
mation, such as lifestyle and medical history. Anthropo-
metric and physiological measurements were taken by 
trained nurses.

Age will be treated as continuous value. BMI will be 
calculated as continuous values using height and weight 
data. Smoking status will be categorized as a dichoto-
mous variable either current or none smoker. Alcohol 
habit will be categorized as a dichotomous variable 
either current or none drinker. Walking habit will be 

categorized as a dichotomous variable by the question-
naire: walking for ≥ 1 h or < 1 h. Delivery will be catego-
rized as a dichotomous variable either experienced or 
not. History and medical comorbidities (menopause, 
hypertension, hyperlipidemia, diabetes, ischemic heart 
disease, stroke, kidney disease, cancer, depression, 
sleep disturbance, OSA, benign prostate disease, pros-
tate cancer) will be categorized as a dichotomous vari-
able by the questionnaire: yes or no. OABSS question 1, 
question 2, question 3 and question 4 will be treated as 
continuous variables. Blood samples (HbA1c, BNP, cre-
atine, PSA) will be used as continuous values. eGFR will 
be calculated from serum creatinine levels using the fol-
lowing formula: 194 × serum creatinine−1.094 × age−0.287 
(× 0.739 if female).

We will develop two models based on the sample size 
calculations as follows (Table 1a and b);

•	 Model 1 including demographic questionnaires 
(age, BMI, delivery and menopause), health behav-
ior questionnaires (smoking status, alcohol habit 
and walking habit) and comorbidities question-
naires (hypertension, hyperlipidemia, diabetes, 
ischemic heart disease, stroke, kidney disease, can-
cer, depression, sleep disturbance, OSA, prostate 
disease and prostate cancer) and questionnaires 

Fig. 1  Study flow chart
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specific OAB (OABSS question 1, question 2, ques-
tion 3 and question 4)

•	 Model 2 consisting of Model 1 plus blood test 
(HbA1c, BNP, eGFR and PSA)

A total of 21 and 25 parameters of variables will be 
included in Model 1 and Model 2 for male, and 21 and 24 
parameters will be included in Model 1 and Model 2 for 
female.

Data cleaning
We will create frequency tables for categorical vari-
ables and box plots for the continuous variables. We will 
identify values out of plausible range (i.e. values that are 
clearly erroneous), and we will classify them as miss-
ing data. We will exclude some categorical predictors 
with very small prevalence. Continuous variables will 
be standardized and categorical variables will be trans-
formed into dummy variables.

Missing data
We will create 10 multiply imputed datasets using 
chained equations [19]. Each completed data set will be 
analyzed separately and the results will be combined by 
Rubin’s rules to account for imputation uncertainty [20].

Model development
Logistic regression model will be used to develop Model 
1 and Model 2 to predict a binary outcome, new-onset 
OAB. To avoid overfitting of data, we will employ a 

Table 1  Candidate predictor variables for new-onset OAB in (a) 
male, (b) female

Variable Scale Number of 
parameters

Model 1 Model 2

(a)

Demographic

Age Continuous 1 1

BMI Continuous 1 1

Health behavior

Smoking status Dichotomous 1 1

Alcohol habit Dichotomous 1 1

Walking habit Dichotomous 1 1

Comorbidity

Hypertension Dichotomous 1 1

Hyperlipidemia Dichotomous 1 1

Diabetes Dichotomous 1 1

Ischemic heart disease Dichotomous 1 1

Stroke Dichotomous 1 1

Kidney disease Dichotomous 1 1

Cancer Dichotomous 1 1

Depression Dichotomous 1 1

Sleep disturbance Dichotomous 1 1

Obstructive sleep apnea Dichotomous 1 1

Prostate disease Dichotomous 1 1

Prostate cancer Dichotomous 1 1

OABSS

Question 1 Continuous 1 1

Question 2 Continuous 1 1

Question 3 Continuous 1 1

Question 4 Continuous 1 1

Blood test

HbA1c (%) Continuous 1

BNP (pg/mL) Continuous 1

eGFR (ml/min/1.73 m2) Continuous 1

PSA (ng/ml) Continuous 1

Total 21 25

(b)

Demographic

Age Continuous 1 1

BMI Continuous 1 1

Delivery Dichotomous 1 1

Menopause Dichotomous 1 1

Health behavior

Smoking status Dichotomous 1 1

Alcohol habit Dichotomous 1 1

Walking habit Dichotomous 1 1

Comorbidity

Hypertension Dichotomous 1 1

Hyperlipidemia Dichotomous 1 1

Diabetes Dichotomous 1 1

Ischemic heart disease Dichotomous 1 1

Table 1  (continued)

Variable Scale Number of 
parameters

Model 1 Model 2

Stroke Dichotomous 1 1

Kidney disease Dichotomous 1 1

Cancer Dichotomous 1 1

Depression Dichotomous 1 1

Sleep disturbance Dichotomous 1 1

Obstructive sleep apnea Dichotomous 1 1

OABSS

Question 1 Continuous 1 1

Question 2 Continuous 1 1

Question 3 Continuous 1 1

Question 4 Continuous 1 1

Blood test

HbA1c (%) Continuous 1

BNP (pg/mL) Continuous 1

eGFR (ml/min/1.73 m2) Continuous 1

Total 21 24
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shrinkage method (LASSO) [21]. To find the optimal 
hyperparameter (λ) of penalization, a tenfold cross-vali-
dation will be performed.

Model performance
We will evaluate the predictive accuracy of each model 
by R2 statistic. Model discrimination, i.e. the ability to 
classify the participants into high-risk or low-risk, will 
be evaluated using the C-statistic. Model calibration, 
agreement between observed outcomes and predictions, 
will be evaluated with calibration plots. To evaluate and 
compare the net benefit between models, decision curve 
analysis (DCA) will be performed [22].

Model validation
We will use internal validation and temporal validation 
to evaluate the model performance [23]. Internal valida-
tion will be performed via bootstrap procedure repeated 
200 times to calculate optimism-corrected R2, c-statistics 
and calibration slope. Temporal validity will be assessed 
by splitting the sample into 3 sets according to the year 
of baseline assessment (i.e. 2008, 2009 and 2010). We will 
use the first 2 sets (2008 and 2009) as the training set, and 
the 2010 set as the testing set, to evaluate discrimination 
and calibration.

Statistical software
We will use R version 4.0.2 for our analyses. We will pro-
gram a Shiny application in R to present the prediction 
results interactively.

Discussion
We have described the protocol for developing a predic-
tion model for OAB. To our knowledge, this is the first 
model to predict new-onset OAB based on a large-scale 
prospective cohort in the general population setting. Our 
prediction models have a large sample size and will incor-
porate various predictive variables based on previous 
studies and expert opinions. Moreover, we will develop 
a user-friendly web-based application to visualize the 
results of the prediction model. This may be very useful 
not only to healthcare providers but also to the general 
population, in interpreting and understanding the results. 
If we can develop an accurate prediction model for OAB 
and make it widely available through a web app, we will 
be able to detect high risk populations and thus intervene 
at an early stage, which may improve individual HRQOL 
and decrease the societal health care expenditure.

There are some limitations in this study. First, there 
may be a selection bias in the sample because the study 
participants were recruited not by random sampling 
but on a voluntary basis. However, compared with 
the previous study using randomly sampled Japanese 

population [24], Nagahama cohort showed similar 
prevalence of OAB [4], which may indicate absence of 
potential selection bias. Second, we will not be able to 
perform an external validation using an independent 
cohort, therefore we will not evaluate the general appli-
cability of the models. Future studies will be necessary 
to demonstrate the external validity of the models with 
another cohort data.

As a future perspective, prediction models of inci-
dent OAB will need to be externally validated and there 
should be an investigation of their impact in clinical 
practice [25]. Our models will be developed by general 
population data and predictors of Model1 will include 
only self-reported questionnaires. This study aims to 
develop a model that is easy to use in the general popu-
lation setting, and thus easy validate externally.
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