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Abstract 

Background:  To investigate the value of computed tomography (CT)-based radiomics model analysis in differentiat-
ing renal oncocytoma (RO) from renal cell carcinoma subtypes (chromophobe renal cell carcinoma, clear cell carci-
noma) and predicting the expression of Cytokeratin 7 (CK7).

Methods:  In this retrospective study, radiomics was applied for patients with RO, chRCC and ccRCC who under-
went surgery between January 2013 and December 2019 comprised the training cohort, and the testing cohort was 
collected between January and October 2020. The corticomedullary (CMP) and nephrographic phases (NP) were 
manually segmented, and radiomics texture parameters were extracted. Support vector machine was generated from 
CMP and NP after feature selection. Shapley additive explanations were applied to interpret the radiomics features. 
A radiomics signature was built using the selected features from the two phases, and the radiomics nomogram was 
constructed by incorporating the radiomics features and clinical factors. Receiver operating characteristic curve was 
calculated to evaluate the above models in the two sets. Furthermore, Rad-score was used for correlation analysis 
with CK7.

Results:  A total of 123 patients with RO, chRCC and ccRCC were analyzed in the training cohort and 57 patients in 
the testing cohort. Subsequently, 396 radiomics features were selected from each phase. The radiomics features com-
bining two phases yielded the highest area under the curve values of 0.941 and 0.935 in the training and testing sets, 
respectively. The Pearson’s correlation coefficient was statistically significant between Rad-score and CK7.

Conclusion:  We proposed a non-invasive and individualized CT-based radiomics nomogram to differentiation 
among RO, chRCC and ccRCC preoperatively and predict the immunohistochemical protein expression for accurate 
clinical diagnosis and treatment decision.
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Introduction
Adult renal tumors were classified according to pathol-
ogy, clinical epidemiology, and genetics by the World 
Health Organization (WHO) in 2016. One subset of 
adult renal tumors exhibits granular cytoplasm, among 
which the common types were renal oncocytoma (RO) 
and chromophobe renal cell carcinoma (chRCC) [1]. 
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Both chromophobe renal cell carcinoma (chRCC) and 
RO originate from renal intercalated cells and account for 
6–8% and 3–7% of all renal tumors, respectively [2]. In 
addition, clear cell carcinoma (ccRCC) is the most com-
mon renal neoplasm, the overlapping imageology fea-
tures also make differentiation between RO and ccRCC 
challenging to a degree [3]. Despite various overlap-
ping features, the varied physiological characteristics 
lead to disparate management and follow-up strategies 
[4]. Patients with RO usually require active surveillance 
because of the benign characteristic and excellent prog-
nosis [5]. Conversely, chRCC is managed by partial 
nephrectomy, while radical resection is recommended 
for ccRCC [6]. Therefore, differential diagnosis of ccRCC, 
chRCC and RO is critical to making treatment strategy 
decisions.

Computerized tomography (CT), especially dynamic 
contrast-enhanced (DCE)-CT is the preferred and the 
most common non-invasive preoperative method for the 
diagnosis of renal lesions. However, radiologists still face 
challenges in differentiating chRCC from RO because of 
overlapping imaging manifestations [7]. Some biomark-
ers, such as delayed enhancement of central stellate scar, 
have been proposed for RO diagnosis. However, only 
25–30% of RO patients may present a central scar in 
practice, resulting in a high false-negative rate [8]. Some 
studies have illustrated that approximately 20% of chRCC 
could also be manifested with similar CT imaging find-
ing [9]. In addition, necrotic area within ccRCC could 
also appear as a central scar. Therefore, the diagnosis of 
benign RO may not be precise when a renal mass with a 
central scar is observed on CT images.

An accurate differentiation of renal tumours relies on 
the histochemistry of the sections and the characteris-
tic morphological features. The advancements in other 
techniques, such as immunohistochemistry and electron 
microscopy, have facilitated the identification of subtle 
pathological characteristics. However, these are neither 
cost-effective nor easily available. Modern molecular 
biomarkers of tumors have been identified for custom-
ized diagnosis and targeted therapy. Cytokeratin 7 (CK7) 
is a low-molecular-weight cytokeratin, expressed in the 
urothelium and epithelia. Several studies have shown that 
CK7 is more readily expressed in chRCC than ccRCC and 
RO [10]. Moreover, it is involved in cell cycle progression 
and differentiation [11], which may contribute to accu-
rate diagnosis and also be a potential therapeutic target 
in renal tumor subtypes [12].

Radiomics is a promising method that gathers mine-
able medical data from texture analysis [13]. It quanti-
tatively analyzes the inherent heterogeneity of tumor 
lesions [14–16] and has been used as a clinical biomarker 
for prognosis or prediction in a broad research field [17, 

18]. Several studies have confirmed that radiomics is not 
only valuable in evaluating renal tumours [19] but also 
in other oncological fields of urology [20]. In addition, 
recent studies also have demonstrated that multimodal 
imaging could help predict tumor staging and progno-
sis [21, 22]. However, previous studies lacked the inter-
pretability of radiomics models, which led to skepticism 
about the underlying mechanisms of the radiomics fea-
tures. In the current study, we explained our classifiers 
by Shapley additive explanations (SHAP) framework to 
increase their usability [23]. Currently, SHAP is the most 
recommended tool for model explanation. It assigns a 
weight value to each feature in the model. Then, the val-
ues for each prediction are calculated independently, 
and high absolute SHAP values indicate importance, 
whereas values close to zero indicate low usability. Thus, 
we hypothesized that the combination of radiomics fea-
tures extracted from the two phases enhances the accu-
rate diagnosis of the two renal tumor subtypes and the 
expression of CK7.

Therefore, the present study aimed to develop a non-
invasive and interpretable nomogram combining CT 
radiomics features from corticomedullary phase (CMP) 
and nephrographic phase (NP) with clinical variables to 
differentiate between RO and renal cell carcinoma sub-
types. In addition, we further investigate the correlation 
between the radiomics signature and CK7 index which 
may provide a promising molecular target for chRCC 
precise therapy.

Materials and methods
Patients
This retrospective study was approved by the institu-
tional review board of the China Medical University, 
and the requirement for patient informed consent was 
waived. The enrolled patients had histologically proven 
ccRCC, chRCC or RO from January 1, 2013 to Octo-
ber 31, 2020 were collected from Picture Archiving and 
Communication System (PACS). The inclusion criteria 
were as follows: (i) surgically removed and pathologically 
proven ccRCC, chRCC and RO; (ii) all lesions were found 
at the first diagnosis without a biopsy puncture or related 
treatment; (iii) a preoperative or pretreatment contrast-
enhanced CT scan was performed in our hospital; (iv) a 
renal function examination was performed in our hos-
pital within one week after the contrast-enhanced renal 
CT scan. The exclusion criteria were as follows: (i) images 
that had significant noise or artifacts; (ii) pathologi-
cal results revealed a mixed renal tumor; (iii) the lesion 
was < 1.0 cm, and the region of interest (ROI) could not 
be delineated accurately. The patient inclusion/exclu-
sion criteria are presented in Fig. 1. The training cohort 
comprised patients from January 2013 to December 
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2019, and the independent testing cohort consisted of the 
patients between January and October 2020.

CT image acquisition
All patients were scanned using a Philip Lightspeed 256-
row CT machine with a tube voltage of 120 kV and a tube 
current of 100 mA. A nonionic contrast agent (containing 
300 mg/mL iodine) was infused into the peripheral vein 
at 1.5 mL/kg infusion dose. Owing to the effect of weight 
on metabolism, the injection was completed within 25 s. 
The scan ranged from the diaphragm to the anterosupe-
rior iliac spine with a thickness of 5 mm/layer. The CMP 
and NP scans were performed 25–30 s and 60–70 s after 
the contrast agent injection, respectively.

Evaluation of CT features
Two abdominal radiologists with 5 and 10 years of expe-
rience, respectively, assessed the CT features blindly and 
independently: CT value difference were noted between 
CMP and NP enhancement, and finally, these values were 
averaged. The results were assessed by a senior physician 
(Xuedan Li, with > 30  years of experience in abdominal 
diagnosis).

Tumor segmentation
The two radiologists drew the ROIs independently, and 
all the lesions were identified correctly by the senior phy-
sician. The radiologists were unaware of the diagnosis 
and blinded to the pathology results. To reduce the par-
tial volume effect, the ROI was drawn carefully to encom-
pass the visible lesion contour within the margins of the 
tumor on CMP and NP axial images using the software 
package ITK-SNAP version 4.11.0 (www.​itk-​snap.​org), 
and the final volumes of interest (VOIs) were generated 
accordingly. An example of the manual segmentation 
process is shown in Fig. 2.

Radiomics feature extraction and selection
All VOIs were imported into A.K. software version 
V3.0.0. R (Analysis Kit, GE Healthcare, China). The 
reproducibility of the extracted features was measured 
by intra-class correlation coefficients (ICCs). A total of 20 
patients were selected randomly, and the inter-observer 
reproducibility was assessed by the two radiologists. Sub-
sequently, the radiologist (Jie Ding) remarked the ROIs 
on these 20 patients after five days. Only the features with 
ICC > 0.80 were retained for the subsequent analysis. The 

Fig. 1  Flowchart illustrates patient recruitment

http://www.itk-snap.org


Page 4 of 11Yu et al. BMC Urology          (2022) 22:147 

extracted radiomics features were standardized into a 
normal distribution (z-scores) to avoid dimension bias.

To avoid redundant data, all radiomics features with 
good agreement of ICCs (> 0.8) from CMP and NP were 
analyzed by least absolute shrinkage and selection opera-
tor (LASSO). respectively, a method for feature selection 
for super-dimensional data. The tuned parameter λ was 
selected according to the smallest ten-fold cross-valida-
tion error score in the training set. The optimal param-
eters are listed in Additional file 1: Table S1.

Classification and evaluation
Support vector machine (SVM) classifier with a radial 
basis function (RBF) kernel was used in our study for 
classification. The extracted radiomics features were 
standardized into a normal distribution (z-scores) to 
avoid dimension bias, and the parameter class-weight 
was set at “balanced” to avoid sample bias. Furthermore, 
to avoid model overfitting, the classifiers were con-
structed using ten-fold cross-validation in the training 
cohort based on the CMP, NP, and the CMP-NP combi-
nation. The parameters of classifiers were set according 
to their stability and best performance by “Grid Search 
CV” algorithm [24]. The SVM parameters are listed in 
Additional file 1: Table S1.

The performance of the classifiers was evaluated on the 
testing set independent of the training set. To evaluate 
and compare the potential of the CT-based radiomics in 
identifying ccRCC, chRCC and RO groups, receiver oper-
ating characteristic (ROC) curve analysis, and the area 
under the ROC curve (AUC) with 95% confidence inter-
val (CI), sensitivity, and specificity values were calculated. 

These data were applied to evaluate the effectiveness of 
the models on the training and testing sets. In order to 
understand how a single radiomics feature contributes to 
the prediction of the model, the value of each feature was 
calculated.

Nomogram construction and evaluation
A nomogram was constructed based on the clinical fac-
tors and the representative Rad-score in the training set. 
The calibration curves were plotted to evaluate the cali-
bration of the nomogram. The ROC and AUC were cal-
culated to quantify the performance of the nomogram 
on the training and testing sets. Decision curve analysis 
(DCA) based on the clinical factors and radiomics fea-
tures in the testing set was used to calculate the net ben-
efits for a series of threshold probabilities and assess the 
clinical value of the nomogram.

Statistical analysis
The Kolmogorov–Smirnov test (K-S test) was con-
ducted to test the normality of data distribution. The 
continuous parameters were computed using the 
Analysis of variance (ANOVA) and post hoc testing 
was applied for the analysis of pairwise differences, 
while the categorical variables were assessed using the 
χ2 test. All statistical analyses were performed using 
SPSS (version 25, Chicago, IL, USA). A two-tailed 
p-value < 0.001 was considered statistically significant. 
The representative radiomics features were correlated 
with the pathological index CK7 using Pearson’s cor-
relation coefficients. The statistical significance of the 
balanced accuracy was computed by the permutation 

Fig. 2  Workflow of radiomics methodology. (1) The example of tumor segmentation on the CT image of a cross-axial section. The contours 
were drawn slightly within the borders of the tumor. The tumor was segmented on both corticomedullary and nephrographic phase images, 
respectively. Thus, VOI was generated by a continuous layer of delineation. (2) Six types of radiomics features were analyzed via AK software. (3) 
LASSO was applied in the training set for feature selection. (4) The models were evaluated by ROC curve analysis. SHAP values were applied with the 
SVM models to transparentize the “black box.” (5) A nomogram that incorporates radiomics signature and clinical factors was constructed to provide 
a visual measure for customized evaluation, followed by decision curve analysis and calibration curve
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test (iteration 1000 times). Feature selection and model 
construction were carried out on the Anaconda3 plat-
form (http://​www.​anaco​nda.​com) with “scikit-learn” 
package (scikit-learn.org) using Python version 3.7.4. 
The nomogram was constructed and evaluated using 
the R statistical software (version 4.1.2).

Results
Patient characteristics
The training cohort consisted of 123 patients (chRCC: 25 
males and 27 females, mean age: 53.0 ± 11.1 years; RO: 11 
males and 17 females, mean age: 58.0 ± 13.7 years; ccRCC: 
23 males and 20 females, mean age: 55 ± 10.5 years). The 
testing cohort consisted of 57 patients (chRCC: 13 males 
and 10 females, mean age: 57.3 ± 9.7 years; RO: 4 males 
and 9 females, mean age: 59.4 ± 7.8  years; ccRCC: 10 
males and 11 females, mean age: 54 ± 10.9  years) col-
lected based on the stratified sampling method. No 
significant differences were detected in the age and gen-
der in the two groups in both the training and testing 
cohorts.

Performance of radiomics feature screening and models
A total of 396 radiomics features were extracted from 
each phase. After performing ICC, mRMR, and LASSO 
regression, the remaining features were as follows: CMP: 
6 features; NP: 5 features; combination: 11 features. The 
best-tuned regularization parameter of LASSO regres-
sion by tenfold cross-validation and the representative 
radiomic features of the combination are shown in Addi-
tional file 1: S1 and Table 1.

Figure 3 shows the AUCs of triple-class SVM models in 
the CMP and NP combination for RO, chRCC and ccRCC 
yielded values of 0.928 (95% CI 0.838–0.997), 0.955 (95% 
CI 0.913–0.996), and 0.939 (95% CI 0.880–0.997) in the 
training set and 0.939 (95% CI 0.855, 0.997), 0.906 (95% 
CI 0.810, 0.998), and 0.959 (95% CI 0.911, 0.996) in the 
testing set. Tables 2 and 3 listed the performance of the 
three classifiers. The SHAP values of the selected feature 

for each prediction were computed, and the SHAP of the 
combination is shown in Fig. 4.

Development and validation of the nomogram
The age, enhancement, and the radiomics features were 
included as independent predictors in the clinical radi-
omics nomogram, presented in Fig.  5a. The calibration 
curves showed good calibration in both the training and 
testing cohorts (Fig. 5b, c). The diagnostic performances 
of the clinical factor model and radiomics nomogram 
are presented in Table 4. The ROC curves for the mod-
els in the training and testing sets are shown in Fig. 6a, 
b. The DCA for the radiomics nomogram and clinical 
prediction model is presented in Fig.  6c. The radiomics 
nomogram showed a greater net benefit over the clinical 
model in differentiating ROs from chRCC and ccRCC in 
the testing set.

Representative radiomics feature analysis 
in the combination phases
After assembling the LASSO regression and SVM, rep-
resentative radiomics features were identified in the 
combination phases, including one histogram, two 
textural parameters, and one GLCM parameter. The 
radiomics signature and score were established by the 
following formula: Radscore = − 0.792*histogramEn-
ergy_CMP + 1.013*HaralickCorrelation_angle135_off-
set7_NP-0.797*HaralickCorrelation_angle135_off-
s e t7_C MP-1 .362*Hig hIntens i tyL argeAre aEmp
ha s i s_N P-1 .132*Iner t i a_ang le0_of f s e t7_C MP-
1.901*ClusterShade_AllDirection_offset1_SD_NP-
0.89*Compactness2_CMP + 0.14*LargeAreaEmphasis_
NP + 3.23.

Figure  7 shows the results of the representative 
radiomics features. The histogram of the uniformity 
(0.61 ± 0.09 in RO; 0.43 ± 0.19 in chRCC, 0.36 ± 0.23 
in ccRCC, p < 0.001) in RO patients was highest and 
lowest in ccRCC (Fig.  7a). The feature- sumVariance 
(0.06 ± 0.02 in RO; 0.04 ± 0.02 in chRCC, 0.02 ± 0.02 in 
ccRCC, p < 0.001) was highest in RO and lowest in ccRCC 
patients (Fig. 7b). The texture features Inertia_angle135_
offset4 (1140 ± 636.53 in RO; 513.09 ± 398.40 in chRCC, 

Table 1  Statistical analysis of the representative radiomic features derived from the combination

*** Denotes statistical significance, p < 0.001

Feature names chRCC​ RO ccRCC​ F-value/p value

HaralickCorrelation_angle135_offset7_NP 2.90E+08 ± 2.26E+08 1.24E+09 ± 1.88E+09 4.68E+07 ± 2.48E+07 11.49/***

Inertia_angle135_offset4_CMP 513.09 ± 398.40 1140 ± 636.53 340.58 ± 299.05 12.06/***

uniformity_CMP 0.43 ± 0.19 0.61 ± 0.09 0.36 ± 0.23 14.97/***

ClusterProminence_angle0_offset7_CMP 3.51E+07 ± 4.55E+07 9.12E+07 ± 5.63E+07 2.43E ± 0.7 ± 5E+07 8.97/***

sumVariance_CMP 0.04 ± 0.02 0.06 ± 0.02 0.02 ± 0.02 21.15/***

http://www.anaconda.com
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Fig. 3  Comparison of ROC curves among CMP, NP, and combined models in the training (a–c) and testing sets (d–f)

Table 2  The diagnostic performance of the radiomic models in the training set (n = 123)

AUC, the area under the curve. CI, confidence interval. CMP, corticomedullary phase. NP, nephrographic phase

Classifier evaluation CMP NP Combination

RO chRCC​ ccRCC​ RO chRCC​ ccRCC​ RO chRCC​ ccRCC​

Average AUC​ 0.864 0.898 0.871 0.853 0.865 0.884 0.928 0.955 0.939

95% CI 0.792, 0.937 0.828, 0.968 0.780, 0.962 0.724, 0.933 0.797, 0.933 0.800, 0.969 0.838, 0.997 0.913, 0.996 0.880, 0.997

Balanced Accuracy 0.822 0.918 0.863 0.845 0.832 0.900 0.928 0.940 0.943

Average Sensitivity 0.844 0.950 0.775 0.789 0.850 0.825 0.956 0.950 0.900

Average Specificity 0.800 0.886 0.971 0.900 0.814 0.957 0.900 0.929 0.986

Table 3  The diagnostic performance of the radiomic models in the testing set (n = 57)

AUC, the area under the curve. CI, confidence interval. CMP, corticomedullary phase. NP, nephrographic phase

Classifier evaluation CMP NP Combination

RO chRCC​ ccRCC​ RO chRCC​ ccRCC​ RO chRCC​ ccRCC​

Average AUC​ 0.949 0.953 0.929 0.888 0.845 0.901 0.939 0.906 0.959

95% CI 0.878, 0.996 0.891, 0.998 0.859, 0.998 0.764, 0.997 0.730, 0.960 0.811, 0.991 0.855, 0.997 0.810, 0.998 0.911, 0.996

Balanced Accuracy 0.877 0.943 0.886 0.864 0.870 0.862 0.914 0.902 0.926

Sensitivity 0.854 0.950 0.905 0.927 0.900 0.857 0.927 0.900 0.952

Specificity 0.900 0.935 0.867 0.800 0.839 0.867 0.900 0.903 0.900
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340.58 ± 299.05 in ccRCC, p < 0.001) and ClusterPromi-
nence_angle0_offset7 (9.12E+07 ± 5.63E+07 in RO; 
3.51E+07 ± 4.55E+07 in chRCC, 2.43E ± 0.7 ± 5E+07 

in ccRCC, p < 0.001) were highest in RO patients com-
pared to the chRCC and ccRCC patients (Fig. 7c, d). The 
GLCM feature- HaralickCorrelation_angle135_offset7 

Fig. 4  Summary plot of the impact features on the prediction of the SVM model. SHAP values of features in every sample. Each line represents a 
feature, and each dot represents a sample (a). The mean absolute value of the feature weight (b)

Fig. 5  A radiomics nomogram incorporating the clinical feature, and a radiomics signature was developed in the training set (a). Calibration curves 
of the radiomics nomogram were used in the training set (b) and testing set (c). The y-axis represents the actual renal cell carcinoma rate, and the 
x-axis represents the predicted renal cell carcinoma possibility
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(1.24E+09 ± 1.88E+09 in RO; 2.90E+08 ± 2.26E+08 
in chRCC, 4.68E+07 ± 2.48E+07 in ccRCC, p < 0.001) 
was higher in RO than in chRCC and ccRCC patients 
(Fig. 7e).

Furthermore, Pearson’s correlation coefficient of 
CK7 and radiomics features are shown in Fig. 7f. CK7 

was significantly correlated with uniformity, Inertia_
angle135_offset4, ClusterProminence_angle0_offset7, 
HaralickCorrelation_angle135_offset7 and sumVari-
ance (p = 0.007, r = -0.331; p = 0.002, r =  − 0.371; 
p = 0.002, r =  − 0.386; p = 0.016, r =  − 0.298, p = 0.02, 

Table 4  The diagnostic performance of the nomogram in both the training and testing sets

Training set Testing set

Nomogram Clinics Nomogram Clinics

AUC (95%CI) 0.990(0.970, 1.000) 0.800(0.680, 0.930) 0.950 (0.850, 1.000) 0.630 (0.240, 1)

ACC (95%CI) 0.947 (0.870, 0.985) 0.750(0.637, 0.842) 0.906 (0.750, 0.980) 0.781 (0.600, 0.907)

Sensitivity 0.949 0.763 0.931 0.821

Specificity 0.941 0.706 0.910 0.510

Fig. 6  ROC curves of clinical and radiomics nomogram models in the training (a) and testing dataset (b). Decision curve analysis of the prediction 
models in the testing set (c). The y-axis measures the net benefit. The red line represents the radiomics nomogram. The green dotted line represents 
the assumption that all patients were renal cell carcinoma. The blue line represents the clinical prediction model. The red dotted line represents the 
radiomics model



Page 9 of 11Yu et al. BMC Urology          (2022) 22:147 	

r = -0.33 respectively), and especially with the Rad-
score (p < 0.001, r = 0.594).

Discussion
In the current study, we developed and validated a radi-
omics model based on the CT images from CMP and NP 
for a non-invasive distinction between RO and Renal Cell 
Carcinoma subtypes, which exhibited good performance. 
With the representative radiomics and clinical factors, a 
visual nomogram demonstrated an impressive efficiency 
with AUC of 0.91 in the testing set. What’s more, we 
found that the non-invasive radiomics factors has the 
ability of predicting the molecular protein CK7, which is 
important for accurate diagnosis and provide a promising 
molecular target for precise therapy.

In the present study, the value of histogram parame-
ter-uniformity of RO was significantly higher than that 
of chRCC, which could be attributed to dispersed gray-
scale on CT images in malignant behaviour. The tex-
tural parameter-Cluster Prominence represented the 

pixel spatial distribution heterogeneity within an ROI. 
A higher cluster prominence value indicated an uneven 
distribution of the gray value in the ccRCC patients. 
This finding indicated that ccRCC is the most malig-
nant renal tumor compared to chRCC and RO [25]. The 
textural parameter- Inertia reflected the texture groove 
depth of the image. The contrast is proportional to the 
texture groove. The value of Inertia was highest in RO 
and lowest in ccRCC patients, suggesting heterogeneous 
tumor tissues in ccRCC patients. We also found that the 
sumVariance is also related to the pathology grade. For 
pathological grade, RO are localized to inert lesions with 
noninvasive biological behaviour. The GLCM parameter-
Haralick Correlation represents the correlation value 
of the local grayscale image and is used to measure the 
similarity of the grayscale image in the row or column 
[3]. We also found that the value of Haralick Correlation 
was highest in RO and lowest in ccRCC patients, suggest-
ing a significant disorder of gray level in ccRCC patients. 
This result was in line with the physiological behavior of 

Fig. 7  Distribution of representative radiomics features and the post-hoc statistical results in the three groups (a–e). Pearson’s correlation 
coefficient heatmap of mutual analysis between the representative radiomics features and clinicopathologic protein (f). The values in the square 
lattices represent the magnitude of the r values of the correlation analysis displayed by color differences
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the tumors, as described previously [26]; the higher the 
degree of malignancy, the lower the value of Haralick-
related parameters. Some studies have confirmed that 
the Haralick parameter is an index of reliability in texture 
analysis [27, 28]. Accordingly, the GLCM parameter-
Haralick Correlation can avoid a large computational 
burden in the process of texture extraction. These results 
suggested that the physiological characteristics of the 
tumor tissue are complex in ccRCC patients. In this 
study, the radiomics features are utilized as an objective 
approach to assess the characteristics of carcinoma in 
clinical practice.

LASSO and SHAP algorithm describe the internal 
characteristics of the tumor. Herein, we applied the SVM 
classifier for an automated distinction among ccRCC, 
chRCC and RO. SVM has been applied to various body 
systems in medical images [29]. Several studies have 
focused on the application of machine learning-aided 
approaches for the diagnosis of renal tumors. In addition, 
applying a classifier further improves the performance 
of portal venous phase CT texture features for the dif-
ferentiation of various RCC subtypes and oncocytoma 
[30]. However, the study did not eliminate redundancy. 
Conversely, the parameters of SVM in our study were 
selected by the “Grid Search CV” algorithm according 
to the best performance of the ten-cross validation, and 
a permutation test was used to confirm the learning effi-
ciency. We found that the combination-phase model had 
the best performance with an average AUC of 0.941 and 
0.935 in the training and testing sets, respectively, which 
was consistent with previous studies [31, 32]. This result 
may be due to the diversification of parameter charac-
teristics, which improves the accuracy of the machine 
model for disease diagnosis.

Furthermore, the clinical and radiologic indicators 
associated with the malignant behavior of chRCC were 
also included in this study. Our radiomics nomogram 
may also increase the efficacy of distinguishing chRCC, 
ccRCC and RO in the training and testing sets. The DCA 
revealed that the radiomics nomogram could be clinically 
applicable. In addition, our study is the first report on the 
correlation between the radiomics features and the renal 
molecular protein. Pearson’s correlation coefficient was 
significant (p < 0.05) between the radiomics features and 
CK7 expression since CK7 is involved in tumorigenesis 
and associated with progression of chRCC. The radiom-
ics features, extracted from the whole tumor and repre-
senting the physiology, could be used to non-invasively 
predict CK7 expression. Interestingly, in routine clinical 
work, when clinicians faced the challenge for RO, chRCC 
and chRCC,, the non-invasive radiomics could help accu-
rate diagnosis and provide a promising molecular target 
for chRCC precise therapy.

Generalizability issues and limitations
This study has several limitations. First, the sample size 
was relatively small, which could be attributed to the 
low clinical incidence of chRCC and RO. Second, it was 
a single-center, retrospective analysis, and thus the gen-
eralizability is subject to certain considerations. Hence, 
this radiomics-based method needs to be further veri-
fied by multicenter studies.

Conclusions
In conclusion, we proposed a non-invasive and individ-
ualized CT-based radiomics nomogram to differentia-
tion among RO, chRCC and ccRCC preoperatively and 
predict the immunohistochemical protein expression 
for accurate clinical diagnosis and treatment decision.
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