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Abstract
Background Lifelong premature ejaculation (LPE) is one of the most common ejaculatory dysfunctions in men. The 
serotonin (5-HT) synthesis rate-limiting enzyme (TPH2) and receptor (HTR1A) in the 5-HT regulatory system may play a 
key role in the pathogenesis of LPE. However, there are few studies on the effects of TPH2 and HTR1A polymorphisms 
on LPE risk. We speculated that TPH2 and HTR1A polymorphisms may affect the occurrence and development of LPE 
in the Chinese Han population.

Methods In this study, 91 patients with LPE and 362 normal controls aged 18 to 64 years were enrolled in the male 
urology department of Hainan General Hospital in China from January 2016 to December 2018. The SNPs in HTR1A 
and TPH2, which are related to 5-HT regulation, were selected as indexes to genotype the collected blood samples 
of participants. Logistic regression was used to analyze the correlation between SNPs of HTR1A and TPH2 with LPE 
susceptibility, as well as the relationship with leptin, 5-HT and folic acid levels.

Results The results revealed that HTR1A-rs6295 increased LPE risk in recessive model. Rs11178996 in TPH2 
significantly reduced susceptibility to LPE in allelic (odds ratio (OR) = 0.68, 95% confidence interval (95% CI) = 0.49–
0.96, p = 0.027), codominant (OR = 0.58, 95% CI = 0.35–0.98, p = 0.040), dominant (OR = 0.58, 95% CI = 0.36–0.92, 
p = 0.020), and additive (OR = 0.71, 95% CI = 0.52–0.98, p = 0.039) models. Grs11179041Trs10879352 could reduce the risk of 
LPE (OR = 0.44, 95% CI = 0.22–0.90, p = 0.024) by haplotype analysis.

Conclusion HTR1A-rs6295 and TPH2-rs11178996 are associated with LPE risk in the Chinese Han population based on 
the finding of this study.
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Introduction
Premature ejaculation (PE) is one of the most common 
ejaculatory dysfunctions in males, and approximately 20 
− 30% of males have experienced PE. PE seriously affects 
not only the physical and mental health of patients but 
also sexual partners, marital relations, and family stabil-
ity [1, 2]. The onset of PE is not age-specific, and PE may 
occur in a large range of people from 18 to 64 years. PE 
can be divided into two types according to the nature and 
the time of onset, that is lifelong premature ejaculation 
(LPE) and acquired premature ejaculation (APE) [3, 4]. 
On the basis of the last international society for sexual 
medicine (ISSM) for the definition of PE: [1] ejaculation 
that always or nearly always occurs prior to or within 
about 1 min of vaginal penetration from the first sexual 
experience (LPE) or a clinically significant and bother-
some reduction in latency time, often to about 3  min 
or less (APE); [2] the inability to delay ejaculation on all 
or nearly all vaginal penetrations; and [3] negative per-
sonal consequences, such as distress, bother, frustra-
tion, and/or the avoidance of sexual intimacy. [3]. It has 
been claimed that the prevalence rate of LPE is 5% glob-
ally and 3% in China [5]. Current PE treatment strategies 
include behavioral therapy, selective serotonin reuptake 
inhibitors and selective phosphodiesterase inhibitors 
[6]. Among them, drug therapy is the first-line treatment 
for PE [7]. Classical selective serotonin reuptake inhibi-
tors (SSRIs), such as dapoxetine, citalopram and Forta-
cin™, effectively delay ejaculation in patients with lifelong 
PE [8–10]. Most PE treatments are either experimental 
or used off-label [6]. Therefore, finding its effective bio-
markers is a new approach to treat PE.

Previous twin and familial studies have demon-
strated a genetic susceptibility to LPE, with genetic fac-
tors accounting for 30% of twins [11, 12]. However, the 
genetic variations in which genes affect LPE susceptibility 
have not been elucidated [13]. Among them, the research 
of 5-hydroxytryptamine (5-HT) and its related regulatory 
genes has a very sufficient theoretical basis [14]. 5-HT 
is the most important neurotransmitter and has been 
found to regulate ejaculation [15]. Tryptophan hydroxy-
lase (TPH) is an important enzyme for 5-HT synthesis, 
and its expression level directly influences the synthesis 
amount of 5-HT, which in turn affects the function of 
5-HT [16]. As one of the subtypes of TPH, TPH2 is spe-
cifically expressed in the raphe nucleus of 5-HT neurons, 
and regulates central 5-HT synthesis [17]. Studies have 
found that TPH2 SNV019 and rs4290270 are significantly 
associated with LPE in the Han population [18]. Besides, 
5-HT needs to bind to its receptors to exert its biological 
effects. Among these receptors, HTR1A (5-hydroxytryp-
tamine receptor 1  A) is one of the 5-HT receptors and 
plays an indispensable role in the regulation of ejacula-
tion [19]. Another study has confirmed that the objective 

diagnostic indicators of LPE, including leptin and folic 
acid, can participate in the regulation of the 5-HT regula-
tory system by affecting the metabolism of 5-HT, and the 
number and function of receptors and transporters [20, 
21].

In general, 5-HT concentration and abnormal recep-
tors are important causes of PE. Therefore, we speculated 
that the 5-HT synthesis rate-limiting enzyme (TPH2) 
and HTR1A may contribute to the development of PE. 
So far, there is a suggestive genome-wide association 
study (GWAS) of the association between 33 gene poly-
morphisms and LPE risk in Chinese Han males [22]. 
Moreover, there are many polymorphisms of TPH2 and 
HTR1A genes, and most of them have been reported to 
be related to the occurrence of neurological diseases [23]. 
However, the effects of TPH2 and HTR1A gene polymor-
phisms on LPE are rarely studied in the Chinese Han 
population. Hence, we further explored the mechanism 
by which TPH2 and HTR1A gene polymorphisms affect 
LPE susceptibility in the Chinese Han population based 
on a case-control study. In addition, statistical analyses of 
LPE risk based on the levels of leptin, 5-HT, and folic acid 
were performed to identify potential risk factors for LPE. 
Our findings will provide a theoretical basis for further 
understanding of the pathogenesis of LPE.

Materials and methods
Study design
In this study, 91 patients with LPE and 362 normal con-
trols aged 18 to 64 years were enrolled in the male urol-
ogy department of Hainan General Hospital in China 
from January 2016 to December 2018. The SNPs in 
HTR1A and TPH2, which are related to 5-HT regulation, 
were selected as indexes to genotype the collected blood 
samples of participants. Logistic regression was used to 
analyze the correlation between SNPs of HTR1A and 
TPH2 and EP susceptibility, as well as the relationship 
with leptin, 5-HT and folic acid levels.

Ethical approval
This study was approved by the Ethics Committee of 
Hainan General Hospital and was conducted strictly in 
accordance with the World Medical Association Declara-
tion of Helsinki. All participants signed an informed con-
sent form after fully understanding the research purpose 
and protocol.

Study participants
All participants were Han Chinese males with perma-
nent sexual partners. The age, leptin, 5-HT and folic acid 
levels, premature ejaculation diagnostic tool (PEDT), 
intravaginal ejaculatory latency time (IELT) and inter-
national erectile function scale (IIEF-5) scores of the 
participants were analyzed. The case group met the 
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following criteria: (1) PE time definition is less than 1 min 
for LPE, and less than 3  min for secondary PE; (2) the 
above symptoms that last longer than 6 months [24]. The 
control group met the following conditions: 1) the lasts 
more than 3  min for LPE from the first sexual life. The 
case and control groups excluded those who met the 
following criteria: (1) men with APE; (2) men with ana-
tomical deformities of the genitals that severely impair 
sexual function; (3) other abnormalities of sexual func-
tion (such as erectile dysfunction); (4) men with severe 
psychological disorders which cannot be well controlled 
by treatment; (5) men with other diseases, such as diabe-
tes, stroke, myocardial infarction, cardiovascular disease, 
cancer, etc. At the same time, LPE patients were regularly 
reviewed and followed up.

SNPs selection and genotyping
Based on the 1,000 Genomes Project (http://
www.1000genomes.org/) and dbSNP (https://www.ncbi.
nlm.nih.gov/SNP/) database, three single nucleotide 
polymorphisms (SNPs) (rs878567, rs6294, and rs6295) 
in HTR1A and ten SNPs (rs11178996, rs11178997, 
rs11179001, rs10879346, rs1386492, rs11179023, 
rs7305115, rs11179041, rs10879352, and rs120074175) 
in TPH2 were selected. The minor allele frequencies 
(MAFs) of these candidate SNPs were greater than 5% in 
the global population.

Genomic DNA was extracted from peripheral blood 
samples of study participants by a Gold Mag-Mini Whole 
Blood Genomic DNA Purification kit (Gold Mag Co. 
Ltd., Xi’an, China) in strict accordance with the instruc-
tions [25]. NanoDrop 2000 (Thermo Scientific, Waltham, 
Massachusetts, USA) was utilized to determine whether 
the concentration and purity of the extracted DNA meet 
the standards, and which can be used for further experi-
ments [26]. The genotyping processes were performed on 
the Agena MassARRAY RS1000 (Shanghai, China) plat-
form, and the SNP genotyping data were processed and 

analyzed by Agena Typer 4.0 software (version 4.0, Agena 
Bioscience, San Diego, CA, USA).

Statistical analyses
The experimental data were statistically analyzed by 
Microsoft Excel, SPSS 20.0 (SPSS, Chicago, IL), and 
PLINK software (version 1.07) (http://pngu.mgh.har-
vard.edu/purcell/plink/). The Chi-square test was used 
to evaluate whether the distribution of polymorphisms 
in the control group meets Hardy-Weinberg equilib-
rium (HWE). Odds ratios (ORs) and 95% confidence 
intervals (95% CIs) were calculated to assess the correla-
tion between SNPs and the risk of LPE based on logistic 
regression models. Linkage disequilibrium (LD) analy-
sis and haplotype construction were performed by the 
Haploview software package (version 4.2) (https://www.
broadinstitute.org/haploview/haploview), and the cor-
relation between haplotypes and LPE susceptibility was 
examined using PLINK software [25].

Results
Characteristics of participants
In this study, the baseline data of 453 participants (91 
LPE patients and 362 healthy people) including age and 
some clinical indexes were collected (Table  1). Age, 
PEDT, IELT, IIEF-5 score and 5-HT level were statisti-
cally significant between cases and controls (p < 0.001), 
and leptin and folic acid expression was not obvious dif-
ferent between cases and controls. The basic information 
of candidate SNPs included in this study is presented 
in Table  2. Except for TPH2-rs11179001 (p < 0.001), the 
other candidate SNPs in controls were in accordance 
with HWE (p > 0.01). Rs11178996 in TPH2 was related to 
a lower risk of LPE in the allelic model. Individuals car-
rying the “G” allele had a reduced risk of LPE (OR = 0.68, 
95% CI = 0.49–0.96, p = 0.027) compared with those car-
rying the “A” allele.

Relationship between TPH2 and HTR1A polymorphisms and 
LPE risk
The associations of different genotypes of TPH2 and 
HTR1A with LPE risk in multiple genetic models are 
shown in Table  3. The results showed that rs6295 in 
HTR1A was significantly associated with an increased 
risk of LPE in recessive model (“G/G” genotype: 
OR = 3.44, 95% CI = 1.03–11.54, p = 0.045) after adjust-
ment. On the contrary, rs11178996 reduced the risk of 
LPE in codominant (“G/G” genotype: OR = 0.58, 95% 
CI = 0.35–0.98, p = 0.040), dominant (“A/G-G/G” geno-
type: OR = 0.58, 95% CI = 0.36–0.92, p = 0.020), and addi-
tive (OR = 0.71, 95% CI = 0.52–0.98, p = 0.039) models 
after adjustment.

Table 1 Comparison of basic characteristics between cases and 
healthy controls
Variables Control (%) Case (%) p-value
Total 362(79.91%) 91(20.09%)

PEDT 3.17 ± 1.82 17.98 ± 2.79 < 0.001

IELT (s) 704.85 ± 339.07 70.73 ± 33.58 < 0.001

Age 41.28 ± 10.95 32.40 ± 6.99 < 0.001

IIEF-5 score 23.26 ± 1.33 22.27 ± 3.61 < 0.001

5-HT (ng/mL) 92.11 ± 97.71 39.47 ± 45.22 < 0.001

Leptin (ng/mL) 1.89 ± 1.40 1.71 ± 1.89 0.434

Folic acid (ng/mL) 60.96 ± 57.05 55.38 ± 46.91 0.519
PEDT, Premature ejaculation diagnostic tool; IELT, Intravaginal ejaculatory latency 
time; IIEF-5: international erectile function scale; 5-HT: 5-hydroxytryptamine

p values were calculated from t test

p < 0.05 indicates statistical significance

http://www.1000genomes.org/
http://www.1000genomes.org/
https://www.ncbi.nlm.nih.gov/SNP/
https://www.ncbi.nlm.nih.gov/SNP/
http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
https://www.broadinstitute.org/haploview/haploview
https://www.broadinstitute.org/haploview/haploview
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Relationship between TPH2 gene polymorphisms and LPE-
related indicators
The relationship between TPH2 gene polymorphisms and 
the levels of leptin, 5-HT, and folic acid in LPE patients 
was also analyzed (Table  4). Rs11178997 in TPH2 was 
found to be correlated with leptin levels in codominant 
(p = 0.027) and dominant (p = 0.007) models. Rs10879346 
in TPH2 showed a significant association with folic acid 
levels in the recessive model (p = 0.037). Rs1386492 in 
TPH2 showed a correlation with 5-HT levels in both 
codominant (p = 0.013) and recessive (p = 0.004) models. 
Rs11178996 in TPH2 was related to the levels of leptin 
(p = 0.031) and folic acid (p = 0.032) in the dominant 
model.

Relationship between haplotypes and LPE risk
Additionally, LD association analysis and haplotype con-
struction of polymorphisms in HTR1A and TPH2 were 
also carried out. As shown in Fig. 1, rs878567 and rs6294 
in HTR1A have a close chain relationship and constitute 
a haplotype block.

As shown in Fig. 2, rs10879346-rs1386492, rs11179023-
rs7305115 and rs11179041-rs10879352 in TPH2 have the 
close chain relationship and constitute three haplotype 
blocks.

Moreover, the haplotype TPH2 Grs11179041Trs10879352 
significantly reduced the risk of LPE after adjustment 
(OR = 0.44, 95% CI = 0.22–0.90, p = 0.024) (Table  5). The 
other haplotypes showed no significant correlation with 
LPE risk.

Table 2 HTR1A and TPH2 candidate SNPs and association with risk of LPE in allele model
SNP Chr Position Gene(s) Role Alleles Frequency (MAF) p - HWE OR (95% CI) p value

Cases Controls
rs878567 5 63,960,164 HTR1A ncRNA_intronic G/A 0.181 0.184 0.034 0.98(0.65–1.50) 0.941

rs6294 5 63,961,426 HTR1A exonic T/C 0.181 0.184 0.034 0.98(0.65–1.50) 0.941

rs6295 5 63,962,738 HTR1A ncRNA_intronic G/C 0.203 0.193 0.011 1.07(0.71–1.61) 0.743

rs11178996 12 71,937,074 TPH2 intergenic G/A 0.341 0.431 0.041 0.68(0.49–0.96) 0.027*

rs11178997 12 71,938,373 TPH2 upstream A/T 0.231 0.215 0.212 1.09(0.74–1.61) 0.655

rs11179001 12 71,944,865 TPH2 intronic A/G 0.456 0.436 <0.001 1.08(0.78–1.50) 0.634

rs10879346 12 71,958,055 TPH2 intronic T/C 0.407 0.429 0.335 0.91(0.65–1.27) 0.579

rs1386492 12 71,968,485 TPH2 intronic T/C 0.434 0.367 0.572 1.32(0.95–1.84) 0.098

rs11179023 12 71,978,617 TPH2 intronic A/G 0.17 0.200 0.324 0.82(0.53–1.26) 0.361

rs7305115 12 71,979,082 TPH2 exonic A/G 0.44 0.384 0.657 1.26(0.91–1.75) 0.170

rs11179041 12 72,010,169 TPH2 intronic A/G 0.198 0.802 0.216 0.89(0.60–1.34) 0.590

rs10879352 12 72,013,178 TPH2 intronic C/T 0.198 0.802 0.218 0.88(0.59–1.32) 0.548

rs120074175 12 72,031,544 TPH2 exonic A/G 0.192 0.808 0.210 0.90(0.59–1.35) 0.599
SNP: Single nucleotide polymorphism; HWE: Hardy-Weinberg equilibrium; ORs: Odds ratio; 95% CI: 95% confidence intervals;
*p - HWE obtained from Fisher’s exact test

Table 3 Logistic regression analysis of the association between HTR1A and TPH2 gene polymorphisms and risk of LPE.
SNP Model Genotype Control Case OR (95% CI) p-value
rs6295 Co-dominant C/C 228(63.2%) 59(64.8%) 1.00

 C/G 127(35.2%) 27(29.7%) 3.22(0.95–10.92) 0.060

G/G 6(1.7%) 5(5.5%) 0.82(0.50–1.36) 0.445

Dominant C/C 228(63.2%) 59(64.8%) 1.00

 C/G-G/G 133(36.9%) 32(35.2%) 0.93(0.58–1.50) 0.767

Recessive C/C-C/G 355(98.4%) 86(94.5%) 1.00

G/G 6(1.7%) 5(5.5%) 3.44(1.03–11.54) 0.045*

Log-additive --- --- --- 1.08(0.70–1.65) 0.731

rs11178996 Codominant A/A 127(35.1%) 44(48.4%) 1.00

 A/G 158(43.6%) 32(35.2%) 0.56(0.29–1.08) 0.083

G/G 77(21.2%) 15(16.5%) 0.58(0.35–0.98) 0.040*

Dominant A/A 127(35.1%) 44(48.4%) 1.00

 A/G-G/G 235(64.8%) 47(51.7%) 0.58(0.36–0.92) 0.020*

Recessive A/A-A/G 285(78.7%) 76(83.6%) 1.00

G/G 77(21.2%) 15(16.5%) 0.73(0.40–1.34) 0.312

Log-additive --- --- --- 0.71(0.52–0.98) 0.039*

SNP: Single nucleotide polymorphism; ORs: Odds ratio; 95% CI: 95% confidence intervals;
* Bold values indicate statistical significance (p < 0.05)
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Discussion
Studies have shown that genetic factors play an impor-
tant role in LPE [11]. In our previous study, 13 genes 
(LACTBL1, SSBP3 and ACOT11) were found to be sig-
nificantly associated with LPE risk in Chinese male Han 
population by genome-wide association analysis [22]. It 
was also reported that the genetic variation of 5-HT1B 
rs11568817 and 5-HT2C rs518147 were significantly 
associated with the occurrence of PE [27]. In this study, 

we investigated whether TPH2 and HTR1A gene poly-
morphisms in the 5-HT regulatory system are potentially 
associated with LPE susceptibility. Our results further 
confirmed that rs6295 in HTR1A was associated with 
an increased risk of LPE, while rs11178996 in TPH2 was 
related to a reduced risk of LPE. Different genotypes of 
rs11178997, rs10879346, and rs1386492 in the TPH2 
gene were significantly correlated with the levels of leptin, 
folic acid, and 5-HT, respectively. Different genotypes of 

Table 4 Relationship between candidate gene polymorphism and leptin, 5-HT, and folic acid levels in LPE patients
SNP Model Genotype Leptin (ng/mL) 5-HT (ng/mL) Folic acid
rs11178997 Co-dominant TT(n = 29) 2.29 ± 2.21 40.06 ± 50.25 40.06 ± 50.25

AT(n = 12) 0.75 ± 0.41 40.30 ± 43.24 40.30 ± 43.24

AA(n = 7) 0.95 ± 0.82 35.61 ± 28.10 35.61 ± 28.10

p-value 0.027* 0.972 0.548

Dominant TT(n = 29) 2.29 ± 2.21 40.06 ± 50.25 52.91 ± 44.92

AT-AA(n = 19) 0.83 ± 0.58 38.58 ± 37.57 59.16 ± 50.83

p-value 0.007* 0.913 0.657

Recessive TT-AT(n = 28) 0.95 ± 0.82 35.61 ± 28.10 73.50 ± 57.53

AA(n = 7) 1.84 ± 1.99 40.13 ± 47.77 52.29 ± 44.98

p-value 0.255 0.810 0.274

rs10879346 Co-dominant TT(n = 16) 1.25 ± 1.29 54.26 ± 57.45 45.20 ± 40.79

TC(n = 25) 1.97 ± 2.26 27.35 ± 27.16 52.40 ± 40.62

CC(n = 7) 1.85 ± 1.52 48.96 ± 59.33 89.33 ± 69.47

p-value 0.488 0.149 0.103

Dominant TT(n = 16) 1.25 ± 1.29 54.26 ± 57.45 45.20 ± 40.79

TC-CC(n = 32) 1.94 ± 2.10 32.08 ± 36.53 60.47 ± 49.52

p-value 0.232 0.110 0.293

Recessive TT-TC(n = 41) 1.85 ± 1.52 48.96 ± 59.33 89.33 ± 69.47

CC(n = 7) 1.69 ± 1.96 37.85 ± 43.09 49.59 ± 40.33

p-value 0.834 0.554 0.037*

rs1386492 Co-dominant CC(n = 17) 1.78 ± 2.20 35.40 ± 41.60 68.93 ± 56.25

TC(n = 22) 1.79 ± 1.79 27.01 ± 29.24 51.42 ± 44.64

TT(n = 9) 1.40 ± 1.64 77.63 ± 64.89 39.49 ± 25.63

p-value 0.864 0.013* 0.277

Dominant CC(n = 17) 1.78 ± 2.20 35.40 ± 41.60 68.93 ± 56.25

T/C-TT(n = 31) 1.67 ± 1.73 41.71 ± 47.61 47.95 ± 40.00

p-value 0.858 0.649 0.140

Recessive T/C-C/C(n = 39) 1.78 ± 1.95 30.67 ± 34.91 59.05 ± 50.11

TT(n = 9) 1.40 ± 1.64 77.63 ± 64.89 39.49 ± 25.63

p-value 0.587 0.004* 0.264

rs11178996 Co-dominant AA(n = 27) 1.96 ± 1.44 43.30 ± 57.21 83.64 ± 66.30

AG(n = 13) 2.62 ± 2.89 33.86 ± 34.20 64.40 ± 49.40

GG(n = 8) 1.20 ± 1.14 41.04 ± 47.47 42.67 ± 34.86

p-value 0.073 0.87 0.065

Dominant AA(n = 27) 1.20 ± 1.14 41.04 ± 47.47 42.67 ± 34.86

AG-GG(n = 21) 2.37 ± 2.42 37.46 ± 43.24 71.73 ± 55.63

p-value 0.031* 0.789 0.032*

Recessive AA-AG(n = 40) 1.96 ± 1.44 43.30 ± 57.21 83.64 ± 66.30

GG(n = 8) 1.66 ± 1.97 38.71 ± 43.29 49.73 ± 40.83

p-value 0.687 0.796 0.061
SNP: Single nucleotide polymorphism; ORs: Odds ratio; 95% CI: 95% confidence intervals;

p-value calculated by logistic regression analysis with adjustments for gender and age;
* Bold values indicate statistical significance (p < 0.05)
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rs11178996 in the TPH2 gene were related to the levels of 
leptin and folic acid. The haplotype Grs11179041Trs10879352 
showed an association with a decreased risk of LPE. This 
study preliminarily evaluated the effects of TPH2 and 
HTR1A gene polymorphisms on the susceptibility to LPE 
in the Chinese Han population.

The TPH2 gene is located on chromosome 12q21.1 and 
includes 11 exons [28]. The protein encoded by TPH2 
catalyzes the first and rate-limiting steps in the biosyn-
thesis of serotonin which is an important hormone and 
neurotransmitter. Currently, TPH2 gene polymorphisms 
have been extensively studied as potential predispos-
ing factors for mental illnesses such as major affective 
disorder [29, 30], and major depressive disorder [28, 
31]. Studies have reported that rs11178997, rs10879346, 
rs11179023, rs7305115, and rs120074175 in the TPH2 
gene are all closely related to the occurrence of depression 
[31, 32]. The allele A of rs11178997 affects the expression 
of TPH2 by inhibiting its transcriptional activity in neu-
rons, resulting in reduced 5-HT synthesis and depression 

[33]. The functional polymorphism rs120074175, in 
which arginine at position 441 in the coding region of 
the human gene is replaced by histidine, can cause 80% 
loss of TPH2 function, which in turn reduces 5-HT syn-
thesis and triggers depression [34]. It is remarkable that 
our study explored the correlation between TPH2 poly-
morphisms and the risk of LPE. Though we did not 
find any significant correlation between rs11178997, 
rs10879346, rs11179023, rs7305115, and rs120074175 
and the risk of LPE, we discovered that different geno-
types of rs11178997, rs10879346, and rs1386492 were 
significantly related to the levels of leptin, folic acid, and 
5-HT, respectively. Moreover, different genotypes of 
rs11178996 were associated with the levels of leptin and 
folic acid. Most importantly, there has been no research 
reported on rs11178996. Our study demonstrated that 
rs11178996 was correlated with decreased risk of LPE.

The HTR1A gene is located on chromosome 5q11.2-
q13, encodes G protein-coupled receptors for 5-HT 
(serotonin), and belongs to the 5-HT receptor subfam-
ily [35, 36]. The main function of HTR1A is to regulate 
the release of serotonin and the metabolism of dopamine 
and serotonin. It has been reported that HTR1A affects 
the occurrence of several diseases including periodic 
fever, menstrual cycle-dependence febrile episode [37], 
generalized anxiety disorder [38], and schizophrenia 
[39]. Previous studies have suggested that HTR1A poly-
morphisms are associated with various mental diseases, 
such as major depressive disorder [40], obsessive-com-
pulsive disorder [41], and anxiety disorder [42]. There 
are few studies on the relationship between HTR1A poly-
morphisms and LPE. Until 2014, Janssen et al. [23] have 
revealed for the first time that HTR1A-rs6295 is related 
to the length of IELT in patients with LPE in the Dutch 
Caucasian population. Recently, Roaiah et al. [43] have 
explored the potential relationship between HTR1A-
rs6295 and LPE risk in Egyptians, and have found that 
the genotype of patients with LPE is mostly “CG”, while 
the genotype of the controls is “GG”. Our study is the first 
to investigate the impact of HTR1A rs878567, rs6294, 
and rs6295 on the risk of LPE in the Chinese Han popula-
tion. Our results indicated that the genotype of patients 
with LPE was mostly “CC”, which is consistent with the 
study reported by Janssen et al. [23] in the Dutch popu-
lation, while is contrary to the study by Mohamed Farid 
Roaiah et al. [43] in the Egyptian population. This may 
be caused by genetic differences among people of differ-
ent races. Although we did not discover any association 
of rs878567 and rs6294 with the risk of LPE, we noticed 
that rs6295 was correlated with an increased risk of LPE. 
Individuals carrying the “GG” genotype had a 3.44-fold 
increased risk of LPE compared with those carrying 
the “C/C-C/G” genotype. Rs6295 is located in the pro-
moter region of the 5-HT1A gene, and can regulate the 

Fig. 1 Haplotype block map of HTR1A SNPs. Block 1 includes rs878567 
and rs6294 with D’ = 1 for the corresponding variants
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region-specific modification of HTR1A expression and 
transcription. Some researchers have claimed that the 
rs6295-G allele can bind to nuclear transcription factors, 
enhance the expression of 5-HT1A autoreceptors, and 
reduce the release of 5-HT to affect the risk of LPE [44, 
45]. Therefore, we speculated that the genotype “GG” of 
rs6295 may also influence 5-HT metabolism by regulat-
ing the expression level of HTR1A, and thus it was related 
to the risk of LPE.

In this study, we explored the correlation between 
HTR1A and TPH2 gene polymorphisms and LPE sus-
ceptibility in Chinese Han males, and found that HTR1a-
rs6295 increased the LPE risk in recessive models, 

while TPH2-rs11178996 was a protective factor for LPE 
occurrence. In addition, TPH2 SNPs were associated 
with leptin, 5-HT, and folic acid levels, and haplotype 
Grs11179041Trs10879352 showed a reduced risk of LPE. 
This study further demonstrated that genetic variation 
plays an important role in the occurrence and develop-
ment of LPE, which is related to the expression of leptin, 
5-HT and folic acid. Furthermore, it provides the basis 
and guidance for the research on the mechanism of genes 
and genotypes regulating the occurrence, development 
and treatment of LPE. Simultaneously, it also excavates 
new biomarkers and provides theoretical support for the 

Fig. 2 Haplotype block map of TPH2 SNPs. Block 1 includes rs10879346 and rs1386492 with D’ = 1 for the corresponding variants. Block 2 includes 
rs11179023 and rs7305115 with D’ = 1 for the corresponding variants. Block 3 includes rs11179041 and rs10879352 with D’ = 1 for the corresponding 
variants
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clinical diagnosis, prevention and personalized treatment 
of LPE.

Our current study also has some limitations due to 
the small sample size, limited information on the clini-
cal indicators of LPE, and the single study population 
which is only the Chinese Han population. Therefore, 
it is necessary to expand the sample size and carefully 
design high-quality studies to further validate our find-
ings. At the same time, the anthropometric variables, 
nutritional status, duration of sexual relationships, total 
physical activity, smoking, alcohol consumption, drink-
ing, psychological status and any drugs history of the 
participants in this study were missing not available for 
statistical analysis, and confounding factors should be 
further excluded in later studies. In addition, our samples 
only represent the Chinese Han population. Due to the 
genetic differences among different ethnic groups, we 
will collect more samples from various populations to 
verify the correlation between TPH2 and HTR1A gene 
polymorphisms and LPE risk.

Conclusion
To sum up, our study provided powerful evidence that 
HTR1A-rs6295 and TPH2-rs11178996 were signifi-
cantly associated with the risk of LPE, and the haplotype 
Grs11179041Trs10879352 shows a decreased risk of LPE in the 
Chinese Han population. Studies have suggested that 
TPH2 and HTR1A polymorphisms may play a potential 
role in the development of LPE, which provides data sup-
port for the prevention, diagnosis and personalized treat-
ment of LPE.
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