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Abstract 

Background Metabolism is a hallmark of cancer and it involves in resistance to antitumor treatment. Therefore, the 
purposes of this study are to classify metabolism-related molecular pattern and to explore the molecular and tumor 
microenvironment characteristics for prognosis predicting in prostate cancer.

Methods The mRNA expression profiles and the corresponding clinical information for prostate cancer patients from 
TCGA, cBioPortal, and GEO databases. Samples were classified using unsupervised non-negative matrix factorization 
(NMF) clustering based on differentially expressed metabolism-related genes (MAGs). The characteristics of disease-
free survival (DFS), clinicopathological characteristics, pathways, TME, immune cell infiltration, response to immuno-
therapy, and sensitivity to chemotherapy between subclusters were explored. A prognostic signature was constructed 
by LASSO cox regression analysis based on differentially expressed MAGs and followed by the development for 
prognostic prediction.

Results A total of 76 MAGs between prostate cancer samples and non-tumorous samples were found, then 489 
patients were divided into two metabolism-related subclusters for prostate cancer. The significant differences in clini-
cal characteristics (age, T/N stage, Gleason) and DFS between two subclusters. Cluster 1 was associated with cell cycle 
and metabolism-related pathways, and epithelial-mesenchymal transition (EMT), etc., involved in cluster 2. Moreover, 
lower ESTIMATE/immune/stromal scores, lower expression of HLAs and immune checkpoint-related genes, and lower 
half-maximal inhibitory concentration (IC50) values in cluster 1 compared with cluster 2. The 10 MAG signature was 
identified and constructed a risk model for DFS predicting. The patients with high-risk scores showed poorer DFS. 
The area under the curve (AUC) values for 1-, 3-, 5-year DFS were 0.744, 0.731, 0.735 in TCGA-PRAD dataset, and 0.668, 
0.712, 0.809 in GSE70768 dataset, 0.763, 0.802, 0.772 in GSE70769 dataset. Besides, risk score and Gleason score were 
identified as independent factors for DFS predicting, and the AUC values of risk score and Gleason score were respec-
tively 0.743 and 0.738. The nomogram showed a favorable performance in DFS predicting.

Conclusion Our data identified two metabolism-related molecular subclusters for prostate cancer that were 
distinctly characterized in prostate cancer. Metabolism-related risk profiles were also constructed for prognostic 
prediction.
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Introduction
Prostate cancer (PC) is most malignancy in men, with 
a globally estimated of approximately 1.4 million new 
cases and 375,000 deaths in 2020 [1]. Although cur-
rent research has shown that factors such as increasing 
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age, ethnicity, family history of this malignancy, certain 
genetic mutations, lifestyle and environmental factors 
are strongly associated with the development of prostate 
cancer, knowledge of its etiology is still limited [2–5]. 
Commonly and traditionally, tissues biopsy remains the 
standard for the diagnosis of suspected prostate can-
cer, mainly the Gleason classification [6]. The improved 
risk stratification [7, 8], new image technology [9], new 
molecular biomarkers [10] increase the precise of diag-
nosis for men with prostate cancer. Two biomarkers, 
prostatic acid phosphatase and prostate-specific antigen 
(PSA) was utilized for screening patient and PSA has 
gradually replaced prostatic acid phosphatase due to its 
high sensitivity [11]. However, PSA is specific to the dis-
eases occurred in prostate, but not correlated with the 
Gleason score, and therefore disconnected with prostate 
cancer [11, 12]. Therefore, recent studies focus on devel-
oping novel biomarkers with improved characteristics in 
prostate cancer to combined with PSA for clinical deci-
sion- making. Nowadays, three primary options, includ-
ing expectant management, surgery, and radiation, are 
chosen for localized prostate cancer. Expectant man-
agement is a safe and preferred approach for men with 
less-aggressive prostate cancer [13], surgery and radia-
tion remain be curative treatments for man with more 
significant cancer [14]. However, the treatment option of 
surgery and radiation causes the adverse effects, such as 
urinary symptoms, sexual dysfunctions, and recurrence, 
affect the quality of prostate cancer patients’ life [15, 16]. 
Androgen deprivation therapy continues to be the first-
line treatment for men with metastatic prostate cancer, 
but emerges toxicant effect [17]. Chemotherapy and 
immunotherapy become to be the efficiency treatments 
to extend survival of prostate cancer [18, 19]. However, 
metastatic prostate cancer remains incurable.

Metabolic reprogramming becomes a hallmark of solid 
cancer, and closely related to the tumor development 
and progress [20, 21]. Metabolic reprogramming gen-
erates the necessary nutrients under the nutrient-poor 
environment and then to support cell viability and build 
new biomass [22]. Alterations in gene expression, cellu-
lar differentiation, and tumor microenvironment (TME) 
through metabolic reprogramming in intracellular and 
extracellular during the processes of cancer-associated 
metabolic reprograming [23]. Typically, the metabolic 
changes associated with cancer involve reprogramming 
of glucose, fatty acid, and amino acid, and nucleotide 
metabolism [24]. Glucose, fatty acid, and amino acid, 
nucleotide metabolism are the main sources of nutrients 
for energy supplement and macromolecular synthesis, 
and constituent of three core metabolic pathways, such 
as anabolic, catabolic, and waste producing, and mediate 
biological processes, for example, glycolysis, tricarboxylic 

acid (TCA) intermediated oxidative phosphorylation, 
glycogenolysis, lipogenesis, and ureal cycle [25]. Increas-
ing evidences have indicated that metabolic reprogram-
ming exerts critical role in carcinogenesis, progression, 
treatment, and prognosis of prostate cancer [26, 27]. In 
the normal prostate tissue, the citrate-orientated meta-
bolic process existed, which may indicate the unique 
metabolic properties showed in prostate cancer [25]. 
In primary prostate cancer, tumor enhanced oxidative 
phosphorylation but limited increase of glycolysis, which 
was a characteristic of advanced castrate resistant pros-
tate cancer [21, 25]. Also, lipogenesis in the form of fatty 
acid synthesis [28, 29] and amino acid metabolism plays 
a crucial role in prostate cancer progression [30]. Guro 
et al.[31] found that metabolic profiling, especially sper-
mine and citrate content can used to distinct the aggres-
sive from indolent prostate cancer. Thus, investigations of 
metabolism are important to understand carcinogenesis 
and cancer developing, and to provide novel insight for 
efficiency diagnosis and treatments.

Taken together, the purposes of this study are explor-
ing the significance of MAGs in prostate cancer and con-
structing metabolism-related gene signatures for survival 
prediction. In the present study, prostate cancer patients 
were classified into two metabolic-related subclusters 
based on differentially expressed metabolism related 
genes (DE-MAGs). The molecular characteristics, tumor 
microenvironment characteristics, and responses to ther-
apy in subclusters were analyzed. Besides, we also con-
structed and validated the prognostic gene signature and 
predictive nomogram based on glucose, fatty acid, and 
amino acid metabolism MAGs.

Methods
Data collection and processing
Transcriptome expression profiles and corresponding 
clinical data for 489 prostate cancer tissues and 52 non-
tumor tissues were obtained from the TCGA-PARD 
dataset in the TCGA (https:// portal. gdc. cancer. gov/) and 
the cBioPortal database (https:// www. cbiop ortal. org/). 
Clinical data contained age, pathological stages, Glea-
son score, prostate-specific antigen (PSA) value, and dis-
ease-free survival (DFS). The TCGA-PARD dataset was 
used as the training set in this study. Moreover, mRNA 
expression files and corresponding clinical information of 
GSE70768 and GSE70769 datasets, including age, patho-
logical stages, PSA value, Gleason score, and biochemi-
cal relapse (BCR) survival time, were obtained from GEO 
(https:// www. ncbi. nlm. nih. gov/ gds). GSE70768 dataset 
included 199 prostate cancer samples and 111 of them 
with BCR information (https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi? acc= GSE70 768). GSE70769 data-
set included 94 prostate cancer samples and 92 of them 
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with BCR information (https:// www. ncbi. nlm. nih. gov/ 
geo/ query/ acc. cgi). GSE70768 and GSE70769 datasets 
were performed by Illumina HumanHT-12 V4.0 expres-
sion beadchip and were used as the testing sets. A total of 
948 MAGs were collected from c2.cp.kegg.v7.4.symbols.
gmt which was downloaded from Molecular Signatures 
Database (MSigDB, https:// www. gsea- msigdb. org/ gsea/ 
msigdb/), the search used the keywords “metabolism”.

Screening the differentially expressed MAGs
In the present study, differentially expressed genes 
(DEGs) between prostate cancer tissues and non-tumor 
tissues were screened using Limma package in R script 
with the criteria of absolute log2 (fold change, FC) > 1 
and adjust P value < 0.05, and the results visualized 
using ggplot package in R script. Then, the differentially 
expressed metabolism-associated genes (MAGs) were 
obtained by intersecting the DEGs and MAGs. And the 
differentially expressed MAGs were visualized using 
pheatmap package in R script.

Unsupervised clustering of prostate cancer
Based on the differentially expressed MAGs, 489 prostate 
cancer samples from TCGA-PARD dataset were classi-
fied into different molecular subclusters using unsuper-
vised non-negative matrix factorization (NMF) clustering 
via NMF R package. The optimal number of clusters was 
determined by k value at which cophenetic correlation 
coefficient began to decline. Then, t-distributed stochas-
tic neighbor embedding (t-SNE) were performed to verify 
the classification performance using the mRNA expres-
sion data of DE-MAGs. Kaplan–Meier (KM) DFS curves 
were drawn using survival R package to validate the cor-
relation between prognosis and classification. The differ-
entially expressed MAGs between molecular subclusters 
were shown using pheatmap package in R.

Estimation of the immune cell infiltration
Estimate package in R script was performed to evalu-
ate the EISTTIMATE score, immune score, and stromal 
score of each sample, with differences between molecu-
lar subgroups subsequently detected by the Wilcoxon 
rank sum test. Besides, single-sample gene set expres-
sion analysis (ssGSEA) was conducted based on the 
mRNA expression data to estimate the immune infiltra-
tion by calculating the enrichment score of each gene in 
a special immune cell marker gene set [32]. SsGSEA was 
performed using GSVA package in R script, and the dis-
crimination of immune infiltration between molecular 
subclusters was determined by Wilcoxon rank sum test.

Gene set expression analysis (GSEA) and gene set variation 
analysis (GSVA)
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway gene set [33–35] (c2.cp.kegg.v7.4.symbols.
gmt) and 50 human cancer hallmark gene set (h.all.
v7.4.symbols.gmt) were downloaded from MSigDB 
(https:// www. gsea- msigdb. org/ gsea/ msigdb/). Then, 
GSEA was performed using the GSEA software (ver-
sion 4.2.2) to explore the potential molecular mechanism 
between molecular subclusters. In addition, GSVA was 
carried out using the GSVA R package to estimate the 
score of above certain pathways and signatures based on 
the mRNA expression data. And the distinctions between 
subclusters were detected by the Wilcoxon rank-sum 
test. To explore the potential molecular characteristics 
of TME between the two subclusters, GSVA was per-
formed using GSVA R package between two subclusters. 
The annotated gene set list, c2.cp.kegg.v7.4.symbols.gmt, 
and TME related gene set (such as CD8 T effector, DNA 
damage repair, EMT, Pan-F-TBRS, and nucleotide exci-
sion repair genes), were selected as the reference gene set 
from MSigDB and previous article [36].

Expression of human leukocyte antigens (HLAs) 
and immune checkpoint‑related genes
HLAs and immune checkpoint-related genes serve an 
important roles in immune function and were associated 
with immunotherapeutic sensitivity. Therefore, the differ-
ent expression of HLAs and immune checkpoint-related 
genes between subclusters was explored by the Wilcoxon 
rank-sum test.

Prediction of the immunotherapeutic response 
and sensitivity to chemotherapy
The Tumor Immune Dysfunction and Exclusion (TIDE) 
score was calculated to estimate the likelihood of 
response to immunotherapy based on the TIDE database 
(http:// tide. dfci. harva rd. edu/). And the different TIDE 
score between subclusters was detected by the Wilcoxon 
rank-sum test. Besides, Submap mapping was used to 
investigate the response of anti-CTLA4/PD1 immuno-
therapy. Considering the distinction in chemotherapeu-
tic sensitivity in prostate cancer patients, the IC50 values 
of 138 antitumor drugs in Genomics of Drug Sensitivity 
in Cancer (GDSC, https:// www. cance rrxge ne. org/) were 
calculated by ridge regression using pRRophetic package 
in R script.

Identification and validation of risk signature 
and construction of a risk model
Univariate cox analysis was performed to identify the 
prognosis-related differentially expressed MAGs in 
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the TCGA-PARD dataset. The differentially expressed 
MAGs associated with DFS were subsequently incor-
porated into the least absolute shrinkage and selec-
tion operator (LASSO) regression cox analysis to 
construct a metabolism-related risk signature for 
prognosis. To validate the prognostic value of the risk 
signature in training (TCGA-PARD) and testing data-
sets (GSE70768 and GSE70769). The risk score of each 
sample was calculated according to the following for-
mula, risk score = n

i=1
coef genei ∗ expr(genei) , coef 

represents the risk coefficient of each gene, and expr 
represents the expression of each gene. The patients 
were stratified into high- and low-risk groups based 
on the median value of the risk score. KM curves were 
drawn to compare the differences in DFS between 
high- and low-risk score groups. Moreover, the AUC 
values of ROC curves for 1-, 3-, and 5-year survival 
was assessed using the survival ROC package in R 
script. The differences in clinical characteristics (age, 
pathological stages, PSA, and Gleason score) between 
high- and low-risk groups also were compared using 
the Wilcoxon rank-sum test.

Estimation of the independent risk factors
The clinical characteristics (age, pathological stages, 
PSA, and Gleason score) and risk score were subse-
quently integrated into univariate and multivariate cox 
analyses to identify the independent risk factors for 
prostate cancer. Forest plots were constructed to show 
the independence of the independent risk score. ROC 
curves for each factor were assessed using the survival 
ROC package in R.

Developing a nomogram
The independent risk factors (risk score and Gleason 
score) which were obtained from univariate and multi-
variate cox analyses were incorporated into a nomogram 
to predict the DFS using rms package in R script. The 
score of each variable was calculated, and then all scores 
were added up to predict the probability of the outcome 
of each patient. The higher total score indicated the lower 
survival rate of each patient. The predictive efficacy of the 
nomogram was evaluated using calibration curves.

Results
Identification of differentially expressed MAGs
We downloaded mRNA expression data of 489 prostate 
cancer tissues and 52 non-tumor tissues from TCGA, and 
a total of 999 DEGs, including 252 up-regulated and 747 
down-regulated DEGs, were screened out with the crite-
ria of absolute log2 (FC) > 1 and adjusted P-value < 0.05 
(Fig. 1A, Additional file 3: Table S1). Then, a total of 76 
differentially expressed MAGs were obtained by inter-
secting 999 DEGs and 948 MAGs (Fig.  1B, Additional 
file  4: Table  S2), which included 17 upregulated and 59 
downregulated MAGs (Fig. 1C).

Developing the metabolism‑associated molecular patterns
Based on the expression profiles of 76 MAGs, 489 pros-
tate cancer samples were classified into two distinct 
groups by NMF with the optimal value of k, which was 
determined by the cophenetic correlation coefficient 
(Fig.  2A, B, Additional file  1). T-SNE was performed 
to validate the performance of NMF, resulting sup-
ported the classification into two subgroups, includ-
ing cluster 1 (n = 264) and cluster 2 (n = 225) (Fig. 2C). 
As shown in Table  1, the significant differences of 

Fig. 1 Identification of differentially expressed MAGs. A Volcano plot of differentially expressed genes (DEGs) between prostate cancer samples 
and non-tumor samples. B Venn of the differentially expressed MAGs by intersecting DEGs and MAGs from MSigDB. C Heatmap clustering of the 
differentially expressed MAGs between prostate cancer samples and non-tumor samples
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clinical characteristics were observed between two 
subgroups, including age (P = 0.0434), pathological T 
stage (P < 0.001), pathological N stage (P = 0.0013), and 
Gleason score (P < 0.001). KM curve also indicated sig-
nificantly different DFS between the two subgroups 
(Fig. 2D, Additional file 1). These data indicated distinct 
clinical characteristics and prognoses between two 
metabolism-associated molecular subgroups.

Analysis of biofunction between two molecular subclusters
Considering the distinct expression of MAGs between 
two molecular subgroups (Fig.  3A), we investigated the 
biofunction pathways enriched in each subgroup using 
GSEA. And the results showed significant differences 
in the biofunction enrichment between the two sub-
groups. Cell cycle and metabolism-related pathways 
mainly involveed in cluster 1 (Fig.  3B), while two neu-
ral regulatory pathways and three cardiac diseases were 
associated with cluster 2 (Fig.  3C). Besides, aldosterone 
regulated sodium reabsorption, calcium signaling path-
way, cytokine-cytokine receptor interaction, hematopoi-
etic cell lineage, and vascular smooth muscle contraction 
involved in cluster 2 (Fig.  3C). Additionally, we also 
investigated the distinct hallmarks of tumors between 
two subclusters, we found cell cycle-related pathways 
involved in cluster 1 (Fig. 3D). And myocytes and EMT-
related pathways were involved in cluster 2 (Fig. 3D).

Correlation of the molecular characteristics 
and subclusters in prostate cancer
Considering that the cycle cell, metabolism, cytokine-
cytokine receptor interaction, and EMT were involved 
in prostate cancer, we further explored the different 
molecular characteristics between two subclusters 
using GSVA. The results showed that cluster 1 mainly 
enriched in nucleotide synthesis pathways, folate bio-
synthesis, glycosylphosphatidylinositol GPI anchor 
biosynthesis, glyoxylate, and dicarboxylate metabo-
lism (Fig.  4A). And cluster 2 enriched in complement 
and coagulation cascades, hematopoietic cell line-
age, aldosterone-regulated sodium reabsorption, ECM 
receptor interaction, arrhythmogenic right ventricu-
lar cardiomyopathy (ARVC), dilated cardiomyopathy, 

Fig. 2 Developing the metabolism-associated molecular patterns. A Factorization rank for k = 2–6. B Heatmap clustering of the subclusters by NMF 
clustering with k = 2. C T-SNE scatter plots of the distinct two subgroups are shown in accordance with NMF clustering. D Kaplan–Meier (KM) DFS 
curves of the two subclusters in TCGA-PARD cohort

Table 1 Clinical characteristics in the metabolic associated 
molecular subtypes in The Cancer Genome Atlas cohort

Variables Cluster1 (N = 264) Cluster2 (N = 225) P‑value

Age

 < 60 96 (36.4%) 103 (45.8%) 0.0434

 ≥ 60 168 (63.6%) 122 (54.2%)

Pathologic T

 T2 81 (30.7%) 104 (46.2%)  < 0.001

 T3 177 (67.0%) 111 (49.3%)

 T4 5 (1.9%) 5 (2.2%)

 NA 1 (0.4%) 5 (2.2%)

Pathologic N

 N0 176 (66.7%) 164 (72.9%) 0.0013

 N1 56 (21.2%) 21 (9.3%)

 NA 32 (12.1%) 40 (17.8%)

PSA value

 < 4 208 (78.8%) 198 (88.0%) 0.231

 ≥ 4 17 (6.4%) 9 (4.0%)

 NA 39 (14.8%) 18 (8.0%)

Gleason score

 < 8 129 (48.9%) 160 (71.1%)  < 0.001

 ≥ 8 135 (51.1%) 65 (28.9%)
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hypertrophic cardiomyopathy (HCM), taurine and 
hypotaurine metabolism, renin-angiotensin system 
(Fig. 4A). Moreover, we further investigated hallmarks 
of cancer between two subclusters, that resulting in 
cluster 1 was associated with cell cycle and metabolism 
associated pathways, (Fig. 4B), and cluster 2 was asso-
ciated with myogenesis, apical surface, KRAS signal-
ing, TNFα signaling via NF-кB, inflammatory response, 

IL6-JAK/STAT3 signaling, UV response, epithelial-
mesenchymal transition, the apical junction (Fig. 4B).

Characterization of the TME between two molecular 
subclusters
To better understand the characteristics of TME between 
distinct molecular subgroups, GSVA was carried out to 
explore the differences between the two subgroups. As 

Fig. 3 Analysis of biofunction between two molecular subclusters. A Heatmap clustering of the differentially expressed MAGs between two 
subclusters. B, C GSEA analysis of biological pathways enriched in two subclusters based on KEGG pathways enrichment gene set. D GSEA analysis 
of diseases-related pathways enriched in two subclusters based on 50 human hallmark gene sets

Fig. 4 Correlation of the molecular characteristics and subclusters in prostate cancer. A GSVA analysis of the different biological pathways enriched 
in two subclusters based on KEGG pathways enrichment gene set. B GSVA analysis of the different diseases-related pathways enriched in two 
subclusters based on 50 human hallmark gene sets
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shown in Fig. 5A, B, two subgroups showed the distinct 
characteristics of TME, cluster 1 was significantly asso-
ciated with cancer progression-relevant signaling, such 
as cell cycle, Fanconi anemia, nucleotide excision repair, 
DNA damage repair, mismatch repair, DNA replica-
tion, Homologous recombination, cell cycle regulators, 
histone. And cluster 2 was associated with stromal and 
immune activation, such as FGFR3-related genes, WNT 
signaling, antigen processing machinery, CD8 T effec-
tor, immune checkpoint, IFN-γ signaling, NLR signaling, 
TLR signaling, TCR signaling, CLR signaling, EMT1/2/3, 
angiogenesis, Pan-F-TBRS (Fig. 5A, B). Subsequently, the 
immune, stromal and ESITIMATE scores were calculated 
using ESTIMATE algorithm. Significant differences were 
exhibited between the two subgroups, that higher stro-
mal scores, immune scores, and ESTIMATE scores in 
cluster 2 than in cluster 1 (Fig. 5C). We further explored 
the abundance of 24 immune-related cell types between 
two subgroups, and the results showed that the differ-
ent abundance of 18 immune cell populations between 

two subgroups, B cells, CD8 T cells, cytotoxic cells, den-
dritic cells (DCs), eosinophils, iDCs, macrophages, mast 
cells, neutrophils, natural killer (NK) cells, pDC, T cells, 
T helper cells, Tem, Tgd, Th2 cells were significantly 
enriched in cluster 2 compared with cluster 1, whereas 
Th2 and Treg cells increased in cluster 1 than cluster 2 
(Fig. 5D, E).

Response of immunotherapy and targeted therapies 
in two molecular subclusters
We further investigated the association between sub-
groups and the expression of HLAs and immune check-
point related genes, resulting in high expression of 
HLA-A, -B, -C, -E, -F, -G, -DMA, -DOA, -DOB, -DPA1, 
-DPB1, -DQA1, -DQA2, -DQB1, -DQB2, -DRA, -DRB1, 
-DRB5 in cluster 2 compared with cluster 1 (Fig.  6A). 
And the significant expression of CD274, CD86, CTLA4, 
HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and 
TNFRSF9 in cluster 2 (Fig. 6B). Then, based on the het-
erogeneity of immune characteristics between two 

Fig. 5 Characterization of TME between two molecular subclusters. A GSVA analysis of the different TME-related pathways enriched in two 
subclusters based on MSigDB and literature. B Boxplot of the GSVA enrichment pathways of two subclusters. C Violin plot of ESTIMATE score, 
immune score, and the stromal score of two subclusters. D ssGSEA analysis the abundance of immune cells between two subclusters. E Violin plot 
of different immune cell populations between two subclusters using ssGSEA analysis
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subgroups, we explored the sensitivity of patients who 
responded to immunotherapy. Although no significant 
differences in TIDE score between the two subgroups 
(Fig.  6C). Submap analysis was subsequently used to 
investigate the response to the anti-PD-1 and CTAL4 
treatment, as shown in Fig. 6D, it indicated the response 
to anti-CTAL4 treatment in cluster 2. Besides, we investi-
gated the chemotherapeutic sensitivity between two sub-
groups, the patients of cluster 1 showed the sensitive to 
31 antitumor drugs than patients in cluster 2 (Additional 
file 2: Figure S1), and the top 4 chemotherapy drugs were 
ABT.888, PF.4708671, GW.441756, RO.3306 (Fig. 6E–H).

Construction and validation of metabolism‑associated 
prognostic signature for prostate cancer
We further investigated the prognostic values of the 
76 MAGs in prostate cancer, 18 MAGs associated 
with DFS were identified by Univariate cox analy-
sis (Fig.  7A). After LASSO cox regression analysis, 10 

MAG signature was constructed, composed of CA14, 
ALDH1A2, ACSS3, ISYNA1, PYGM, TK1, HAGHL, 
RRM2, CD38, AK5 (Fig. 7B, C). The risk score of each 
sample was calculated, and then all prostate cancer 
patients in training (TCGA-PRAD) and testing sets 
(GSE70768 and GSE70769) were divided into high-
risk and low-risk groups with the median value of risk 
score (Fig. 7D–F). The patients with higher risk scores 
indicated a greater number of recurrences both in 
the training set and two testing sets (Fig.  7D–F). The 
patients with high-risk scores exhibited a worse DFS 
(Fig.  7G–I). Moreover, the ROC curves for 1-, 3-, and 
5-year DFS used to evaluate the performance of MAG 
signature, and the AUC for 1-, 3-, and 5-year DFS in the 
training set were 0.744, 0.731, 0.735 (Fig. 7J). The AUC 
for 1-, 3-, 5-year DFS in GSE0768 dataset were 0.668, 
0.712, 0.809 (Fig. 7K). The AUC for 1-, 3-, 5-year DFS 
in GSE0769 dataset were 0.763, 0.802, 0.772 (Fig.  7L). 
ROC curves demonstrated the favorable performance 
of risk signature.

Fig. 6 Response of immunotherapy and targeted therapies in two molecular subclusters. A Histogram of the differentially expressed HLA family 
between two subclusters. B Histogram of the differentially expressed immune checkpoint-related genes between two subclusters. C Violin plot of 
TIDE prediction score between two subclusters. D Submap analysis of the response to anti-CTLA4 and anti-PD-1 treatment of two subclusters. E–H 
Violin plot of different IC50 values of ABT.888, PF.4708671, GW441756, RO.3306 between two subclusters

(See figure on next page.)
Fig. 7 Construction and validation of metabolism-associated prognostic signature for prostate cancer. A Forest plot of the DFS-related MAGs 
based on univariate cox analysis. B LASSO coefficient profiles of the selected MAGs at optimal λ (grey line) for metabolism-related clustering. C 
LASSO regression model with 10-cross validation was used to select the optimal λ (dash line) with minimum mean square error (red dots). D–F 
The high-risk and low-risk groups are based on the median value of risk score (up), the survival status between high-risk and low-risk groups 
(middle), and the gene expression (bottom), in TCGA-PARD, GSE70768, and GSE70769 cohorts. G–I KM DFS curves of high-risk and low-risk groups in 
TCGA-PARD, GSE70768, and GSE70769 cohorts. J–L ROC curves for 1-, 3-, and 5-year of DFS in TCGA-PARD, GSE70768, and GSE70769 cohorts
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Correlation of the clinical characteristics and molecular 
subclusters
We also investigated the correlation between risk score 
and clinicopathological characteristics, including age, 
pathological stage (T/N), Gleason score, and PSA value. 

As shown in Fig. 8A, risk scores were significantly asso-
ciated with different ages, pathological stages, Gleason 
score, and PSA value. High-risk scores were associated 
with older patients (Fig.  8B), higher T and N stages 
(Fig. 8C, D), and higher Gleason scores and PSA values 
(Fig. 8E, F).

Fig. 8 Correlation of the clinical characteristics and molecular subclusters. AHeatmap showed the correlation of clinicopathological characteristics 
(age, Gleason score, T/N stages, PSA value) and risk score in the TCGA-PARD cohort. B–F Violin plots of the different risk scores in age stratification 
(age < 55 and age ≥ 5), T stage stratification (T2/3/4), N stage stratification (N0/1), Gleason score stratification (Gleason score < 8 and Gleason 
score ≥ 8), PSA value stratification (PSA value < 0.4 and PSA value ≥           0.4)

Fig. 9 Developing and validating a nomogram for prostate cancer. A, B Forest plot of the independent factors for prognosis predicting based on 
univariate cox and multivariate cox analyses. C ROC curves validated the performance of the independent factors. D A nomogram for 1-, 3-, and 
5-year DFS predicting based on independent factors. E Calibration curves for 1-, 3-, and 5-year DFS. F–H Calibration curves for 1-, 3-, and 5-year DFS, 
individually
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Developing and validating a nomogram for prostate 
cancer
Integration of the clinicopathological characteristics 
and risk score, univariate and multivariate cox analy-
ses demonstrated that the risk score and Gleason score 
could independently predict the DFS of prostate cancer 
patients (Fig.  9A, B). The AUC values of risk score and 
Gleason score were 0.743 and 0.738, which validated the 
predictive ability (Fig. 9C). Based on the independent fac-
tors, we constructed a nomogram for predicting prostate 
cancer patients’ DFS (Fig. 9D). And the calibration curves 
for 1-, 3-, and 5-year DFS have confirmed the predictive 
accuracy of the nomogram (Fig. 9E–H).

Discussion
In recent years, numerous studies have demonstrated 
that metabolic reprogramming is required for tumor ini-
tiation, malignant transformation, development, resist-
ance to antitumor therapy (chemotherapy, radiotherapy, 
immunotherapy), and unfavorable outcome [37–40]. 
Metabolic reprogramming usually inevitably results 
in alterations in TME, cellular and molecular compo-
nents, decreased PH value, and diverse nutritional sup-
plements [41]. Moreover, metabolism reprogramming 
not only plays a crucial role in cancer signaling but also 
affects immune response [42]. Herein, identification of 
the metabolism-related subgroups of prostate cancer is 
a benefit for developing the treatment strategy. In this 
study, we identified 76 differentially expressed MAGs 
between prostate cancer samples and non-tumor sam-
ples. Prostate cancer patients were subsequently classi-
fied into two subgroups based on those 76 MAGs. KM 
curve indicated the patients in cluster 1 with poor DFS 
compared with those in cluster 2. These data indicated 
that MAGs were strongly associated with prognosis in 
men with prostate cancer.

Then, biological function analyses indicated that clus-
ter 1 is mainly associated with cell cycle and metabolic 
pathways, such as aminoacyl tRNA biosynthesis, base 
excision repair, glyoxylate, and dicarboxylate metabo-
lism, homologous recombination, mismatch repair, and 
protein export, and spliceosome. Previous study has 
demonstrated that lipid metabolism-associated pathway, 
including de novo lipogenesis through steroid hormone 
biogenesis and β-oxidation of fatty acids is related to the 
prognosis of prostate cancer [43]. Likewise, Berchuck 
et al. was found androgen signaling contributed to higher 
levels of lipid metabolism and effected the immune 
response in prostate cancer [44]. Aminoacyl tRNA bio-
synthesis is a hallmark of prostate cancer progression 
[45]. Overexpression of base excision repair related genes 
associated with poor survival rate for prostate cancer 
patients [46]. Glyoxylate and dicarboxylate metabolism 

served important functions in prostate cancer [47]. 
Moreover, gene mutations in prostate cancer involved in 
homologous recombination, commonly respond to PARP 
inhibition and platinum-based chemotherapy [48]. Mis-
match repair is an important mechanism in the preven-
tion of genetic instability, mismatch repair defects have 
been found in prostate cancer [49]. The spliceosome acts 
as a new therapeutic vulnerability in aggressive prostate 
cancer [50]. The above pieces of evidence have dem-
onstrated that modulating the cell cycle and metabo-
lism-related pathways can be used as clues for the new 
non-invasive early screening methods.

Meanwhile, we found cluster 2 is associated with three 
cardiac diseases, such as ARVC, dilated cardiomyopathy, 
and HCM. Although the phenomenon is rare, the simi-
larity has been found in previous research [51]. Besides, 
cluster 2 is associated with two neural regulatory path-
ways, such as glycosphingolipid biosynthesis ganglio 
series and neuroactive ligand-receptor interaction. These 
are firstly found the unexpected phenomenon in the 
functional analysis of prostate cancer. Moreover, cluster 2 
enriched in aldosterone-regulated sodium reabsorption, 
calcium signaling pathway, cytokine-cytokine recep-
tor interaction, hematopoietic cell lineage, and vascu-
lar smooth muscle contraction. Aldosterone-regulated 
sodium reabsorption enriched in prostate cancer has 
been found in previous studies [52, 53]. And the calcium 
signaling pathway is found as a hallmark of aggressive 
prostate cancer with bone metastasis [54]. Cytokine-
cytokine receptor interaction, hematopoietic cell line-
age, and vascular smooth muscle contraction were firstly 
found in prostate cancer.

In addition, GSEA analysis also indicated that hall-
marks of tumor set were enriched in cell cycle-related 
pathways, such as MYC targets V1 and V2, E2F tar-
gets, and G2M checkpoint in the cluster 1, and cluster 
2 enriched in apical surface, apical junction, myogen-
esis, KRAS signaling downregulated, EMT, UV response 
downregulated. MYC targets V1 and V2, E2F targets, and 
G2M checkpoint are the four typical hallmarks of the cell 
cycle. MYC gene is one of the most frequently deregu-
lated driver genes in human cancer and usually acts as 
a potential anticancer target [55]. E2F family not only 
acts as transcriptional regulators of cell cycle-depend-
ent gene expression but also maintains genomic stabil-
ity [56], upregulated E2F and E2F target in tumor link 
with poor prognosis in prostate cancer [57, 58]. Disrup-
tion of cell cycle checkpoints can be used as a hallmark 
of cancer, arresting the cell cycle by inducing the G2M 
checkpoints to inhibit cancer [59]. Interrupting the cell 
cycle may be a therapeutic strategy for prostate cancer in 
cluster 1. KRAS is a key oncogene in cancer, inhibition of 
KRAS signaling inhibits EMT in breast cancer [60]. The 
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phenomenon indicated that cluster 2 with stromal activa-
tion. Moreover, the GSVA results supported the results, 
and TNFα signaling via NF-кB, inflammatory response, 
and IL6-JAK/STAT3 signaling were enriched in cluster 2, 
indicating that cluster 2 with immune activation. Similar 
to our results, He et al. found four metabolism-associated 
genes (GAS2, SLC17A4, NTM, and GC) is potential for 
predicting prognosis, and chemo-/immuno-therapy 
response in prostate cancer patients [61].

Furthermore, we investigated the TME characteris-
tics between two subclusters. And we found cluster 1 
was associated with cancer progression-relevant signal-
ing, and cluster 2 was associated with immune activa-
tion and response-related pathways. These findings have 
been supported by the ESTIMATE algorithm, which was 
a higher ESTIMATE score, stromal score, and immune 
score in cluster 2 compared with cluster 1. The abun-
dance of immune cell population in cluster 2, including 
B cells, CD8 T cells, cytotoxic cells, DCs, eosinophils, 
iDCs, macrophages, mast cells, neutrophils, NK cells, 
pDC, T cells, T helper cells, Tem, Tgd, Th2 cells. And 
Th2 and Treg cells enriched in cluster 1. There are shown 
significant immune heterogeneity between two metabo-
lism-related subclusters. Whether is there any different 
responses for antitumor therapy between two subclus-
ters. Firstly, we found HLA family and immune check-
point-related genes are upregulated in cluster 2. The 
above results indicated that cluster 2 is associated with 
stromal and immune activation. And cluster 2 showed a 
significant response to anti-CTAL4 treatment. Moreover, 
cluster 1 showed more sensitivity to chemotherapy drugs, 
such as ABT.888, PF.4708671, GW.441756, and RO.3306. 
It suggested that the patients in cluster 1 are more suit-
able for individualized chemotherapy.

Moreover, we constructed a prognostic signature 
based on MAGs and divided prostate cancer patients in 
TCGA and two GEO datasets (GSE0768 and GSE0769) 
into high-risk and low-risk groups. We found higher risk 
scores associated with age, higher T and N stages, higher 
Gleason score and PSA value, and poor prognosis. The 
risk score and Gleason score could be used as independ-
ent factors for DFS prediction. Although MAG signature 
can be used as potential biomarkers for DFS prediction in 
prostate cancer, it is still a lack of extensive clinical vali-
dation. Gleason score remains the most reliable prognos-
ticator in men with prostate cancer [62], nevertheless, the 
limitation of this method is that the Gleason grading sys-
tem is based on the prostate needle biopsy, and difficult 
to obtain the grading of small foci of prostate cancer [63]. 
So, risk score and Gleason score are used as prognostica-
tors for prostate cancer and have respective advantages 
and disadvantages. Therefore, maybe two prognosticators 
can be used together in clinical practice.

Conclusion
Taken together, we constructed the metabolism-related 
molecular patterns with 79 MAGs in prostate cancer in 
prostate cancer with the different phenomena, which 
also showed significant differences in biological func-
tion, immune characteristics, and prognosis. MAGs 
have prognostic value in prostate cancer, and with con-
structed prognostic signature based on MAGs, patients 
were subsequently divided into two high- and low-risk 
score groups with different oncological outcomes. Our 
finding provided useful tools to manage prostate can-
cer. Although MAG signature has been demonstrated 
that revealed the reliable predictive ability for prostate 
cancer based on the bioinformatics analysis, the results 
also needed more experimental evidence to prove. 
Thus, the relationship of MAGs and clinicopathology 
parameters will verify in a larger in-house cohort and 
the function of these MAGs in cell phenotypes will be 
discussed.
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