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Abstract 

Background Bladder cancer (BLCA) is one of the most common malignancies among tumors worldwide. There 
are no validated biomarkers to facilitate such treatment diagnosis. DNA methylation modification plays important 
roles in epigenetics. Identifying methylated differentially expressed genes is a common method for the discovery 
of biomarkers.

Methods Bladder cancer data were obtained from Gene Expression Omnibus (GEO), including the gene expression 
microarrays GSE37817( 18 patients and 3 normal ), GSE52519 (9 patients and 3 normal) and the gene methylation 
microarray GSE37816 (18 patients and 3 normal). Aberrantly expressed genes were obtained by GEO2R. Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed using the DAVID database 
and KOBAS. Protein-protein interactions (PPIs) and hub gene networks were constructed by STRING and Cytoscape 
software. The validation of the results which was confirmed through four online platforms, including Gene Expression 
Profiling Interactive Analysis (GEPIA), Gene Set Cancer Analysis (GSCA), cBioProtal and MEXPRESS.

Results In total, 253 and 298 upregulated genes and 674 and 454 downregulated genes were identified 
for GSE37817 and GSE52519, respectively. For the GSE37816 dataset, hypermethylated and hypomethylated genes 
involving 778 and 3420 genes, respectively, were observed. Seventeen hypermethylated and low expression genes 
were enriched in biological processes associated with different organ development and morphogenesis. For molecu-
lar function, these genes showed enrichment in extracellular matrix structural constituents. Pathway enrichment 
showed drug metabolic enzymes and several amino acids metabolism, PI3K-Akt, Hedgehog signaling pathway. The 
top 3 hub genes screened by Cytoscape software were EFEMP1, SPARCL1 and ABCA8. The research results were veri-
fied using the GEPIA, GSCA, cBioProtal and EXPRESS databases, and the hub hypermethylated low expression genes 
were validated.

Conclusion This study screened possible aberrantly methylated expression hub genes in BLCA by integrated bioin-
formatics analysis. The results may provide possible methylation-based biomarkers for the precise diagnosis and treat-
ment of BLCA in the future.
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Introduction
Bladder cancer (BLCA) is the most lethal malignancy 
of the urinary tract and the most common nonskin, 
solid cancer. In 2020, GLOBOCAN estimated 573278 
new cases and 212536 deaths, making BLCA the tenth 
most diagnosed cancer worldwide [1, 2]. According to 
reports, with variable risks of recurrence and progres-
sion, the mortality and morbidity of BLCA have gradually 
increased in recent years [3, 4]. Transurethral resection 
of bladder tumor (TURBt) was the gold standard for the 
initial diagnosis and treatment of non-muscle  invasive 
bladder cancer (NMIBC) [5]. Due to the high recurrence 
rate of NMIBC, patients need to undergo disproportion-
ately invasive and unpleasant cystoscopy 4 times each 
year [6]. Therefore, a simple and reliable biomarker is 
necessary for accurate diagnosis of BLCA.

As heritable gene expression alterations, one of the 
most widespread epigenetic alterations is DNA methyla-
tion, which can affect the function of tumor suppressor 
genes and change their expression [7–13]. Because DNA 
methylation is conventionally regarded as a silencing epi-
genetic marker, several methylation markers have been 
reported in the detection of BLCA and prediction of the 
risk of disease prognosis and progression in recent years 
[14–16]. Hence, further research on methylated differen-
tially expressed genes (MeDEGs) using high-throughput 
data has great significance for discovering novel cancer 
biomarkers. With the development of bioinformatics, 
many excellent software and online tools have emerged. 
These bioinformatics tools provided rapid and con-
venient analysis methods for the large amount of data 

from diverse gene-sequencing platforms and accurately 
screened potential novel genes as biomarkers [17, 18].

The existing literatures on DNA methylation con-
sidered imperfect because the analytical and validated 
methods used in these studies lacked systematicity and 
integrity. In this study, the potential biomarker which 
had strength relation with BLCA were screened from 
different database used a series of advanced bioinfor-
matics tools. In addition, the results were identified by 
several online platform to ensure the validation. The aim 
of these research was to identify the hub MeDEGs that 
were greatly associated with BLCA. We hope that this 
research will provide valuable biomarker candidate genes 
for BLCA diagnosis.

Materials and methods
Microarray data collection
After a systematic search of the GEO database, two gene 
expression profiling datasets (GSE37817 public on May 
03, 2013; GSE52519, public on Nov 20, 2013) and one 
gene methylation profiling dataset (GSE37816, public 
on May 03, 2013 ) were selected and downloaded from 
the Gene Expression Omnibus (https:// www. ncbi. nlm. 
nih. gov/ geo/) of The National Center for Biotechnol-
ogy Information (NCBI). GSE37817 and GSE52519 
were based on GPL6102 (Illumina human-6 v2.0 expres-
sion bead chip). GSE37816 was based on GLP8490 
(Illumina HumanMethylation27 Bead Chip (Human 
Methylation27_270596_v.1.2)). GSE37817 consisted of 18 
patients and 3 normal controls. GSE52519 consisted of 9 

Fig. 1 Identification of MeDEGs in gene expression profiling datasets (GSE37187, GSE52519) and gene methylation profiling datasets (GSE37186) 
(intersection of A: hypomethylated and highly regulated expression genes. Intersection of B: hypermethylated and downregulated genes)

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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patients and 3 normal controls. GSE37816 consisted of 
18 cancer patients and 6 controls.

Data processing
GEO2R was an interactive web tool composed with 
GEOquery and limma. GEOquery parsed GEO data into 
R data structures. Limma (Linear Models for Microar-
ray Analysis) was a statistical test to identify differentially 
expressed. GEO2R allowed users to compare two or more 
groups of samples in a GEO series in order to identify 
heatmapgenes that were differentially expressed across 
experimental conditions [19]. GEO2R was adopted 
to identify the differentially expressed genes (DEGs) 
between bladder cancer and non-bladder cancer tissues 
from GSE37817 and GSE52519. P < 0.05 and | log FC| > 1 
were used as the cut-off criteria to find DEGs. The 
MeDEGs were identified from GSE37816 if they met the 
cut-off criteria of P < 0.05. The heatmap of the top 100 

DEGs and MeDEGs was drawn using the heatmap online 
tool [20]. The intersecting genes were chosen using the 
Venn diagram web tool [21]. 

Function and pathway enrichment analysis
Gene Ontology (GO) enrichment analysis included 
molecular function (MF), cellular component (CC), and 
biological process (BP) using DAVID (v2022q4). KOBAS 
(version 3.0) was applied for KEGG pathway enrichment 
[22]. A P-value < 0.05 was used as the cut-off to analyze 
the GO and pathway enrichment.

PPI network construction and hub gene identification
The protein-protein interaction (PPI) network of hyper-
methylated-downregulated genes was constructed 
using STRING software. An interaction score of 0.3 was 
regarded as the cut-off criterion. The degree values were 

Fig. 2 Heatmap of the top 100 DEGs (A, B) and MeDEGs (C)
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calculated by the Cytoscape (v3.9.1) plugin cytoHubba, 
and the top 10 were considered hub genes [23].

Validation of chosen hub genes
The Cancer Genome Atlas (TCGA) collected, ana-
lyzed over 11,000 cancer samples from patients across 
33 cancer types. Genotype-Tissue Expression (GTEx) 

produced RNA-Seq data for over 8000 normal samples, 
albeit from unrelated donors to balance the tumor data. 
GEPIA (Gene Expression Profiling Interactive Analysis) 
was a newly developed interactive web server for ana-
lyzing the RNA sequencing date for tens of thousands 
of cancer and non-cancer samples from the TCGA and 
the GTEx projects. Comparing with others web tools, 
GEPIA may provide detailed of 9736 tumors and 8587 
normal samples differential expression analyses, chromo-
somal distribution plots, similar gene detection, dimen-
sionality reduction analysis or expression comparison 
among pathological stages [24]. Gene Set Cancer Analy-
sis (GSCA) integrated over 10,000 multi-dimensional 
genomic data across 33 cancer types from TCGA and 
over 750 small molecule drugs. This integrated platform 
provided a series of services to perform gene set expres-
sion, mutation and methylation analyses [25].

To validate the results, the interactive web server 
GEPIA was employed to compare the expression level of 
each hub gene between BLCA samples and normal sam-
ples. Furthermore, the GSCA platform for genomic can-
cer analysis was used to compare the methylation status 
of hub genes between BLCA samples and normal tissue 
samples.

Table 1 Gene ontology analysis of MeDEGs

Category Term Gene count % P value

Hypermethylation and low 
expression

GO:0009887 animal organ morphogenesis 6 35.29 1.11E-03

GO:0048857 neural nucleus development 3 17.65 1.29E-03

GO:0048732 gland development 4 23.53 5.63 E-03

GO:0048592 eye morphogenesis 3 17.65 7.03E-03

GO:0009790 embryo development 5 29.41 9.62 E-03

GO:0048598 embryonic morphogenesis 4 23.53 0.012

GO:0048729 tissue morphogenesis 4 23.53 0.013

GO:0010224 response to UV-B 2 11.76 0.013

GOTERM_BP_FAT GO:0090596 sensory organ morphogenesis 3 17.65 0.020

GO:0048562 embryonic organ morphogenesis 3 17.65 0.024

GO:0045596 negative regulation of cell differentiation 4 23.53 0.025

GO:0007420 brain development 4 23.53 0.026

GO:0048048 embryonic eye morphogenesis 2 11.76 0.028

GO:0060322 head development 4 23.53 0.030

GO:0001654 eye development 3 17.65 0.039

GO:0033993 response to lipid 4 23.53 0.042

GO:0031103 axon regeneration 4 23.53 0.042

GOTERM_MF_FAT GO:0005201 extracellular matrix structural constituent 3 17.65 9.69 E-03

GOTERM_CC_FAT GO:0031012 extracellular matrix 3 17.65 0.039

GO:0005576 extracellular region 9 52.94 0.043

GO:0044421 extracellular region part 8 47.06 0.047

Table 2 KEGG enrichment of hypermethylated and low 
expression genes ( P <0.01)

Term ID P-Value

Metabolic pathways hsa01100 2.80e-4

Drug metabolism - cytochrome P450 hsa00982 4.68e-4

Platinum drug resistance hsa01524 4.81e-4

Metabolism of xenobiotics by cytochrome P450 hsa00980 5.20e-4

Chemical carcinogenesis hsa05204 6.02e-4

Small cell lung cancer hsa05222 7.70e-4

Toxoplasmosis hsa05145 1.12e-3

Pathways in cancer hsa05200 1.47e-3

Fluid shear stress and atherosclerosis hsa05418 1.68e-3

Focal adhesion hsa04510 3.37e-3

Phenylalanine metabolism hsa00360 7.77e-3

Primary bile acid biosynthesis hsa00120 7.77e-3

PI3K-Akt signaling pathway hsa04151 1.00e-2
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The cBioPortal was a resource for interactive explo-
ration of multidimensional cancer genomics data sets. 
Multiple types of genomic alteration data could be simul-
taneously displayed by cBioPortal [26, 27]. MEXPRESS 
was a data visualization tool designed for the easy visu-
alization of DNA expression, DNA methylation and clini-
cal data, as well as the relationships between them. The 
feature of this web tool was allowed you to look at DNA 
methylation data in relation to its genomic location [28].

To investigate the correlation between the methylation 
and expression of MeDEGs, the cBioPortal platform for 
exploration, visualization and analysis of BLCA genome 
data was used. The data of 413 BLCA patients were 
enrolled from TCGA. Finally, for the integration and 
visualization of relationships between DNA methylation 
and gene expression levels of hub genes, MEXPRESS vis-
ualization tool was exploited.

Results
Identification of MeDEGs
In two gene expression profiling datasets, 72 genes were 
upregulated (298 in GSE52519 and 253 in GSE37817), 
and 138 genes were downregulated (674 in GSE37817 
and 454 in GSE52519). In the gene methylation profiling 
dataset, there were 778 hypermethylated genes and 3420 
hypomethylated genes. Using a Venn diagram, 17 hyper-
methylated, low-expressing genes and 8 hypomethylated, 
high-expressing genes were identified (Fig.  1A-B). The 
top 100 DEGs and MeDEGs with the highest differences 
are illustrated on the heatmap in Fig. 2A-C.

GO functional enrichment analysis of MeDEGs
Gene ontology (GO) enrichment analysis of MeDEGs 
using DAVID is illustrated in Table 1. For hypermethyl-
ated and downregulated genes, biological processes (BP) 

Fig. 3 KEGG pathway enrichment of hypermethylated genes in bladder cancer
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were mainly associated with different organ development 
and morphogenesis. For molecular function (MF), the 
results were enriched in extracellular matrix structural 
constituents. The cell component (CC) analysis indicated 
enrichment of 10 extracellular regions and the extracel-
lular matrix.

KEGG pathway enrichment analysis indicated that 
hypermethylated and low expression genes were signifi-
cantly enriched in metabolism related to the drug meta-
bolic enzyme CYP450 and several amino acids, signaling 
pathways related to PPAR (peroxisome proliferator-acti-
vated receptor, PPARs), PI3K-Akt, and Hedgehog. 
Enriched terms visualized in barplot using KOBAS. The 
results are shown in Fig. 3 and Table 2.

PPI network construction and hub gene selection
Protein-protein interaction (PPI) networks were con-
structed using the STRING database. The PPI network 
for hypermethylated and low expression genes is shown 
in Fig. 4A. The degree of all nodes was calculated by the 
Cytoscape plugin cytoHubba. Genes with higher degree 
values were considered hub genes. The order of hub genes 
was EFEMP1, SPARCL1, ABCA8, ALDH1A3, CPXM2, 
COX7A1, MAMDC2, MFAP4, PLSCR4 and LAMA3. 
The network of hub genes is illustrated in Fig. 4B.

Validation of the top 10 hypermethylated low expression 
genes
First, the expression statuses of 10 hub genes were com-
pared between normal and BLCA tissues in TCGA and 
GTEx database using the GEPIA online platform. P-value 
cutoff was 0.01. The results are shown in Fig. 5. From the 
results, except for LAMA3, the other gene expression 

levels in BLCA were significantly lower than those in 
normal tissue.

In addition, the multiple gene expression compari-
son was also executed. The results shown that the 
SPARCL1, MFAP4, COX7A1, EFEMP1 and MAMDC2 
were highly expressed in normal tissue among the hub 
genes. By compared, MFAP4, MAMDC2, SPARCL1, 
ABCA8 and COX7A1 had significant differential 
expression between tumors or normal tissues in BLCA.

Furthermore, the methylated expression statuses of 
hub genes were compared between normal and BLCA 
tissues using GSCA online platform. The p-value was 
estimated by t-test and was further adjusted by FDR. 
The cutoff was FDR ≤ 0.05. The outcome is summa-
rized in Fig. 6. From the figure, except for LAMA3, the 
methylated expression level in tumor tissues was sig-
nificantly higher than that in normal tissue. The highly 
methylated level between tumor and normal tissues 
were ALDH1A3, EFEMP1, SPARCL1, CPXM2 and 
EFEMP1.

The correlation between the mRNA expression levels 
and methylation expression was performed using the 
cBioPortal online platform. Spearman’s analysis results 
are illustrated in Figs.  7-8. Obviously, the correlation 
between the mRNA expression and methylated expres-
sion was negative among the hub genes. The co-efficient 
was medium level in COX7A1, EFEMP1 and MFAP4 
(Cor>0.5).

Finally, the MEXPRESS tool was used to investigate the 
DNA methylation changes at individual CpGs in BLCA. 
From Figs. 9, 10 and 11, it was clear that the normal sam-
ples clustered towards higher expression. There was a 
negative correlation between expression and methylation 
around the promoter region.

Fig. 4 PPI and hub gene identification of hypermethylated-downregulated genes (A: PPI. B: The hub genes were screened by Cytoscape)
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Fig. 5 Comparison of the hub gene expression in BLCA and normal tissues using GEPIA. (Tumor samples are marked in red, and normal samples 
are marked in gray. *P < 0.01 was considered statistically significant)
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Discussion
BLCA is a common malignancy of the urinary tract 
and a significant cause of cancer morbidity and mor-
tality worldwide. The five-year survival rate is only 5% 
in patients with distant metastasis [29].In recent years, 
some methods for predication postoperative survival 
and recurrent of BLCA were reported [30]. Epige-
netic mechanisms take part in an important role in the 
pathogenesis of BLCA. Identifying accurate biomark-
ers for primary BLCA is a key clinical need for BLCA 

diagnostics. At meantime, the effective biomarkers are 
also important for the therapy of BLCA and healthcare 
[31, 32]. Many studies have exploited aberrant DNA 
expression signatures or methylation signatures to pre-
dict the characteristics or prognosis and drug resist-
ance of different type cancer, such as BLCA [33–35] 
and prostate cancer [36, 37].

In this study, several bioinformatics analysis methods 
were applied to identify potential key MeDEGs asso-
ciated with BLCA. Using two DEG profiles of BLCA 

Fig. 6 Comparison of the methylated expression statuses of hub genes between BLCA tissue and normal tissues using GSCA. (Tumor samples are 
marked in red, and normal samples are marked in blue. *FDR<0.01 was considered statistically significant)
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obtained from the GEO database, 72 upregulated and 
138 downregulated DEGs were observed. By compar-
ing the MeDEG profile retrieved from the GEO data-
base with these DEGs, 8 hypomethylated and highly 
expressed genes and 17 hypermethylated and lowly 
expressed genes were identified.

GO enrichment analysis showed that hypermethylated 
and low expression genes were mainly enriched in organ 
development and morphogenesis-related BP, especially 
in neural nucleus and gland development. KEGG enrich-
ment analysis indicated that metabolism for CYP450, 
several amino acids metabolism and signaling pathways 
were significantly enriched. Interestingly, these signal-
ing pathways and substances which were closely related 
to cell proliferation and the pharmacodynamics of anti-
tumor drugs. For instance, PI3K-Akt activation was also 
found in breast cancer [38], gastric cancer [39], and thy-
roid carcinoma [40]. Activation of Hedgehog (Hh) signal 
resulted in tumorigenesis, malignancy, such as basal cell 
carcinoma, pancreatic cancer, prostate cancer [41–43]. 
Hypermethylated genes were also related to focal adhe-
sion in the research, which potentially promotes tumor 
cell proliferation and mobility [44].

The 17 hypermethylated low expression genes, 
including ISL1, ABCA8, MFAP4, COX7A1, SPARC1, 
ALDH1A3, ACOX2, HOXA9, PLSCR4, CPXM2, BCL2, 
MAMD2, CKB, EFEMP1, SNRPN, GSTM5, and LAMA3 
were analyzed using Cytoscape software. EFEMP1, 
SPARCL1, ABCA8, MFAP4, PLSCR4, MAMDC2, 
COX7A1, CPXM2, ALDH1A3 and LAMA3 were iden-
tified as hub genes. Among these genes, ALDH1A3, 
HOXA9 and ISL1 methylation patterns have been 
reported to be related to the clinical outcomes of BLCA 
[45–47]. SPARCL1 was a prognostic biomarker for colo-
rectal cancer because its expression was downregulated 
through DNA methylation [48, 49]. Many genes such 
as ABCA8, MFAP4 and MAMDC2 also been potential 
diagnostic and prognostic biomarkers in hepatocellular 
carcinoma, breast cancer and ovarian cancer [50–53]. 
Because these genes were related to BLCA at the mecha-
nistic level, it was possible to be a potential biomarker for 
BLCA.

The most of chosen hub genes were correct by 
four online platform tools validated. Through multi-
ple genes comparison using the GEPIA online plat-
form, the MFAP4, MAMDC2, SPARCL1, ABCA8 and 

Fig. 7 Spearman’s correlation analysis between gene expression level and methylated expression level of COX7A1, MFAP4, EFEMP1, PLSCR4, 
SPARCL1 and ALDH1A3 genes. (Spearman’s correlation coefficient and P-values are shown in each plot)
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EFEMP1 had highly difference expression level between 
tumors and normal tissue. Among these five genes, the 
SPARCL1, EFEMP1 and MFAP4 had significant highly 
methylation between normal and tumor tissues using 
GSCA online platform. The co-efficient >-0.5 between 
the mRNA expression levels and methylation expression 
were COX7A1, EFEMP1 and MFAP4. Through analysis, 
the MFAP4, SPARCL1, EFEMP1, COX7A1, ABCA8 and 
MAMDC2 would be more likely to become potential 
biomarker.

As was well known, CpGs were hot-shot regions of 
the genome, one-third of all point mutations causing 
genetic diseases in human result from mutation at CpG 
site [54]. The DNA methylation was changed during the 
initiation and progression of cancer with hypomethyla-
tion of CpG poor intergenic regions and hypermethyla-
tion of CpG islands associated with gene silencing and 
reduced plasticity [55]. In the genome of normal cells, 
promoter CpG islands were hypomethylated. How-
ever, tumor cell hypermethylation of the CpG island in 

the tumor suppressor promoter region was associated 
with malignant formation and progression [56, 57]. 
The methylation alternation of hub genes in BLCA and 
normal tissues were compared using MEXPRESS visu-
alization tool. The results illustrated there were signifi-
cant negative correlation in expression and methylation 
around the CpG and promoter region. The hypermeth-
ylation around promoter and CpG region of hub genes 
may led to down-regulate expression. The hub genes 
were related with PI3K-Akt and Hedgehog signal trans-
duction which were also associated with cancer cell 
proliferation and survival. Hence hypermethylation 
would be associated with hub gene repression and initi-
ate BLCA.

Conclusion
In this study, several differentially methylated genes 
associated with BLCA were identified. The character-
istics of the signatures were confirmed by a series of 

Fig. 8 Spearman’s correlation analysis between gene expression level and methylated expression level of MAMDC2, LAMA3, CPXM2, ABCA8 genes. 
(Spearman’s correlation coefficient and P-values are shown in each plot)
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Fig. 9 Visualization of the DNA of CpGs island methylated expression of COX7A1, MFAP4 and EFEMP1 genes in BLCA (Pearson correlation range 
around the promoter region were shown in each plot. *p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 10 Visualization of the DNA of CpGs island methylated expression of PLSCR4, SPARCL1 and ALDH1A3 genes in BLCA (Pearson correlation range 
around the promoter region were shown in each plot. *p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 11 Visualization of the DNA of CpGs island methylated expression of MAMDC2, LAMA3, CPXM2 and ABCA8 genes in BLCA (Pearson correlation 
range around the promoter region were shown in each plot. *p < 0.05, **p < 0.01, ***p < 0.001)
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systematic bioinformatics analysis tools. We hoped 
these genes, especially the MFAP4, SPARCL1, EFEMP1, 
COX7A1, ABCA8 and MAMDC2, would be an effec-
tive biomarker for BLCA diagnostics.

This study was mainly based on bioinformatic analy-
sis of the GEO database. The amount of data and verifi-
cation of identified genes were insufficient. In addition, 
some of hypermethylated genes had been observed not 
only in BLCA but also in many other cancers. Future 
research will be needed to confirm the performance of 
these aberrantly methylated genes in clinical practice.
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