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Abstract
Background Metabolism reprogramming is a hallmark that associates tumor growth, metastasis, progressive, 
and poor prognosis. However, the metabolism-related molecular patterns and mechanism in clear cell renal cell 
carcinoma (ccRCC) remain unclear. Herein, the purpose of this study was to identify metabolism-related molecular 
pattern and to investigate the characteristics and prognostic values of the metabolism-related clustering.

Methods We comprehensively analyzed the differentially expressed genes (DEGs), and metabolism-related genes 
(MAGs) in ccRCC based on the TCGA database. Consensus clustering was used to construct a metabolism-related 
molecular pattern. Then, the biological function, molecular characteristics, Estimate/immune/stomal scores, immune 
cell infiltration, response to immunotherapy, and chemotherapy were analyzed. We also identified the DEGs between 
subclusters and constructed a poor signature and risk model based on LASSO regression cox analysis and univariable 
and multivariable cox regression analyses. Then, a predictive nomogram was constructed and validated by calibration 
curves.

Results A total of 1942 DEGs (1004 upregulated and 838 downregulated) between ccRCC tumor and normal 
samples were identified, and 254 MRGs were screened out from those DEGs. Then, 526 ccRCC patients were 
divided into two subclusters. The 7 metabolism-related pathways enriched in cluster 2. And cluster 2 with high 
Estimate/immune/stomal scores and poor survival. While, cluster 1 with higher immune cell infiltrating, expression 
of the immune checkpoint, IFN, HLA, immune activation-related genes, response to anti-CTLA4 treatment, and 
chemotherapy. Moreover, we identified 295 DEGs between two metabolism-related subclusters and constructed a 
15-gene signature and 9 risk factors. Then, a risk score was calculated and the patients into high- and low-risk groups 
in TCGA-KIRC and E-MTAB-1980 datasets. And the prediction viability of the risk score was validated by ROC curves. 
Finally, the clinicopathological characteristics (age and stage), risk score, and molecular clustering, were identified 
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Introduction
Renal cell carcinoma (RCC) is a malignant solid tumor 
that accounts for 2.2% of the total cancer cases and 1.8% 
of the cancer deaths in 2020 [1]. In the United States, 
there are an estimated 79,000 new cases and 13,920 
deaths in 2022 [2]. Clear cell RCC (ccRCC) is the most 
common subtype of RCC among approximately 80% of 
kidney cancers [3]. CcRCC is histologically character-
ized by clear cytoplasm, with nested clusters of cells sur-
rounded by a dense endothelial network [4]. In the past 
decade, the survival period of ccRCC patients has been 
prolonged [5], however, approximately 30% of ccRCC 
patients develop recurrence and metastasis after sur-
gical resection [6]. Cytokine is still a treatment option 
for advanced ccRCC [7], and targeted therapies are the 
current treatment options for ccRCC, such as tyrosine 
kinase inhibitors (TKIs) [8]. The use of inhibitors to curb 
the overexpression of immune checkpoint ligands and 
the immunomodulatory effects of anti-angiogenic agents 
were current standard of metastatic RCC care [9]. And 
risk stratification exerts a prominent role in clinical trial 
design and treatment selection in ccRCC [10, 11]. There-
fore, developing a new prognostic risk model for ccRCC 
is crucial for designing therapeutic options.

Metabolic reprogramming is a cancer hallmark that 
supports tumor cell proliferation and growth in nutrient-
poor settings [12]. There are different from normal cells, 
tumor cells maintain their survival and growth under the 
normal or even under severe microenvironments through 
energy acquisition and biomass synthesis by reprogram-
ming catabolic and anabolic metabolism [13]. Warburg 
effects or aerobic glycolysis is a core metabolic process to 
generate energy and provide essential glycolytic interme-
diates [14]. In addition, glutaminolysis and fatty acid oxi-
dation are the other core metabolic processes of catabolic 
and anabolic processes, such as protein, nucleotide bio-
synthesis, one-carbon metabolism, and lipid biosynthesis 
[15]. Recent pieces of evidence have found that cancer 
metabolism affects the proliferation, differentiation, exe-
cution of effector functions of cancer cells, stromal and 
immune cells in the tumor microenvironment (TME) to 
regulate response to antitumor treatment [13, 16, 17]. 
ccRCC was regarded as a metabolic disease in the sense 
that many of metabolism reprogramming, including 
reprogramming of glucose, fatty acid, the tricarboxylic 
acid cycle (TAC), tryptophan, arginine, and glutamine, 

has been widely found participated in the development 
and metastasis [18, 19], that provides new biomarkers, 
molecular mechanisms, and therapeutic strategies for 
ccRCC. The inactivation of von Hippel Lindau (VHL) 
gene was found is almost universal in ccRCC, which leads 
to the activation of hypoxia-relevant pathway and meta-
bolic pathways such as glycolysis pathway and glutamine 
reprogramming into antioxidant pathways [20–22]. How-
ever, the metabolism-related molecular pattern and char-
acteristics remain unclear.

In the present study, we comprehensively identified 
metabolism-related molecular patterns, the molecular 
characteristics of metabolism-related patterns, the land-
scape of immune cell infiltration, and the prognostic 
values of metabolism-related genes based on the TCGA-
KIRC from The Cancer Genome Atlas (TCGA) data-
base, GSE73731 dataset from Gene Expression Omnibus 
(GEO), E-MTAB-1980 dataset from ArrayExpress 
database.

Methods
Data collating and processing
In this study, the mRNA expression profiles and corre-
sponding clinical information were obtained from The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/), which contains a total of 533 KIRC samples and 72 
paracancerous samples. According to the data integrality, 
526 KIRC samples and 72 paracancerous samples were 
ultimately involved in the subsequent analysis. Mean-
while, the gene expression profiles GSE73731 dataset 
which contained 265 ccRCC samples were obtained from 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/), performed on Affymetrix Human Genome 
U133 Plus 2.0 Array. And the accession number of Array-
Express is E-MTAB-1980, including 101 who had follow-
up information obtained from the ArrayExpress database 
(https://www.ebi.ac.uk/arrayexpress).

Screening the differentially expressed genes (DEGs) in 
ccRCC
Limma package in R was performed to identify the DEGs 
from 526 KIRC samples and 72 paracancerous sam-
ples, which included upregulated and downregulated 
DEGs according to the false discovery rate (FDR) < 0.5 
and log2 |fold change (FC)| > 1. The results were visu-
alized by the ggplot2 R package. Then, a total of 254 

as independent prognostic variables, and were used to construct a nomogram for 1-, 3-, 5-year overall survival 
predicting. The calibration curves were used to verify the performance of the predicted ability of the nomogram.

Conclusion Our finding identified two metabolism-related molecular subclusters for ccRCC, which facilitates the 
estimation of response to immunotherapy and chemotherapy, and prognosis after treatment.
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metabolic-associated genes (MAGs) expressions were 
screened and visualized by pheatmap R package (Table 
S1).

Construction of the MAG signature
After combining the expression of MAGs with survival 
time, then, the prognostic MAGs were identified by uni-
variable Cox analysis using the Survival package in R.

Development of metabolic-related subclusters using 
consensus clustering
Unsupervised hierarchical clustering was performed 
using the ConsensusClusterPlus R package to group the 
prognostic MAGs in the TCGA database. The optimal 
number of clusters (k value) was determined according 
to the cumulative distribution function (CDF) reached an 
approximate maximum. Besides, t-Distributed Stochas-
tic Neighbor Embedding (t-SNE), which is a non-linear 
dimensionality reduction method, was performed to 
detect the accuracy of clustering. Meanwhile, the unsu-
pervised hierarchical clustering was also performed using 
the ConsensusClusterPlus R package and validated using 
t-SNE in the GSE73731 dataset. Finally, the Subnetwork 
Mappings in Alignment of Pathways (SubMAP) matrix 
was conducted to investigate the similarity of a subset 
from TCGA and GEO datasets.

Gene set enrichment analysis (GSEA)
GSEA was performed to explore the potential molecular 
mechanism between the two clusters based on Hallmark 
gene sets from Molecular Signature Database (MSigDB, 
https://www.gsea-msigdb.org/gsea/msigdb/).

Estimation of the tumor microenvironment (TME) cell 
infiltration
The immune score, stromal score, and ESTIMATE score 
of each sample were estimated using the estimate pack-
age in R, and the differences between the two clusters 
were determined using the Wilcoxon rank-sum test.

Estimation of the immune cell landscape
The immune cell fractions were identified using CIBER-
SORT, which is a deconvolution algorithm based on the 
expression of 547 genes. And single-sample gene set 
enrichment (ssGSEA) algorithm was performed using the 
GSVA package in R to quantize the relative abundance of 
each immune cell type.

Analysis of the core biological pathways of ccRCC
Gene set variation analysis (GSVA) algorithm was used to 
explore the distinct signaling pathways between subclus-
ters based on the gene expression profiles. The gene sets 
associated with TME-related pathways were downloaded 
from The Molecular Signatures Database v7.2 (MSigDB, 

https://www.gsea-msigdb.org/gsea/msigdb/). The enrich-
ment score of pathways in each sample was calculated 
and the differences between subclusters were detected 
using the Wilcoxon rank-sum test. The differential path-
ways were screened with the criteria of FDR < 0.05 and 
|log2 (FC)| > 0.2.

Prediction of immunotherapy response between clusters
Tumor immune dysfunction and exclusion (TIDE, http://
tide.dfci.harvard.edu/login/) and the SubMap algorithm 
were used to predict the likelihood of response to immu-
notherapy. Human leukocyte antigen (HLA) genes and 
immune checkpoints exert crucial roles in response to 
immunotherapy. The differences in TIDE scores and dif-
ferential pathways were determined by Wilcoxon rank-
sum test.

Prediction of drug sensitivity between clusters
The sensitivity of each sample to chemotherapy drugs 
was decided by Genomics of Drug Sensitivity in Cancer 
(GDSC, https://www.cancerrxgene.org/). The half-max-
imal inhibitory concentration (IC50) value was assessed 
by ride regression using the pRRophetic R package. The 
smaller the IC50 value indicated the stronger inhibitory 
effects on cancer cells.

Construction of the risk signature and model
The DEGs between subclusters were obtained using the 
Limma package in R with the criteria of FDR < 0.05 and 
|log2 (FC)| > 1. Then, the prognostic associated DEGs 
were screened using univariable cox regression analysis 
in the TCGA database. Hazard ration (HR) > 1 indicated 
the poor survival outcomes, while HR < 1 indicated the 
good survival outcomes. Gene with P-value < 0.05 were 
identified as prognostic associated DEGs. The least 
absolute shrinkage and selection operation (LASSO) 
Cox regression analysis was used to identify risk gene 
signature based on prognostic associated DEGs using 
the glmnet package in R. Then, the multivariable cox 
regression analysis was used to assess the indepen-
dence of the risk gene signature via the coxph package 
in R. According to the risk gene signature, the risk score 
was calculated as the following formula, risk score = ∑n

i=1 coef (genei) ∗ expr (genei), coef represented the 
risk coefficient, and expr represented the expression of 
each gene. Patients were divided into high-risk and low-
risk groups based on the median risk score. Kaplan-Meier 
curves were used to compare the differences in overall 
survival (OS) between the two groups. Time-dependent 
receiver operating characteristic curves (ROC) for 1-, 
3-, 5-years OS were used to predict the predictive power 
of the risk model. In addition, the survival information 
obtained from the ArrayExpress database was used to 
validate the risk model.

https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
http://tide.dfci.harvard.edu/login/
http://tide.dfci.harvard.edu/login/
https://www.cancerrxgene.org/
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Construction of predictive nomogram of ccRCC patients
The clinicopathological factors and risk score incorpo-
rated into the nomogram to construct the predictive 
model for prognosis using the rms package in R. Calibra-
tion curves were established to evaluate the predictive 
accuracy of the nomogram.

Statistical analysis
In this study, all statistical analyses and visualized were 
performed using R software version 3.4.4 according to 
previous manuscript from Assel et al. [20]. The continu-
ous variables were shown as mean ± standard deviation 
(SD), Chi-square test was used to analysis the signifi-
cance of difference of the categorical variables. And sur-
vival analysis was performed using Kaplan-Meier plots 
and log-rank tests. p-value < 0.05 was considered statisti-
cal significance.

Results
Identification of the prognostic associated metabolism-
related genes (MRGs)
The design of this study was shown in Fig. 1. 526 KIRC 
samples and 72 paracancerous samples from the TCGA 
database. A total of 1942 DEGs, including 1004 upregu-
lated and 838 downregulated DEGs, were identified 
between tumor and normal samples in ccRCC (Fig. 2A, 

Table S2). Then, 254 MRGs were screened between 
tumor and normal samples in ccRCC (Fig. 2B).

Construction of metabolism-related subclusters for ccRCC
We further incorporated the survival data and MRGs into 
a univariable cox regression model to identify the prog-
nostic related genes. And the results showed that 117 
MRGs were associated with ccRCC prognosis (Table 1). 
Then, 526 ccRCC patients were divided into two distinct 
subclusters using consensus clustering, including clus-
ter 1 (n = 217) and cluster 2 (n = 309) (Fig.  3A-B, Figure 
S1, Table 2). OS curve indicated the patients in cluster 1 
with a better prognosis than those in cluster 2 (Fig. 3C). 
The robustness of the classification was verified by t-SNE 
methods, and we observed the discrimination of two sub-
clusters (Fig.  3D). In addition, we also classified ccRCC 
patients into subclusters using unsupervised consen-
sus clustering in the testing cohort (GSE73731 dataset), 
and the results showed the discrimination between two 
subclusters (Figure S2). The dimensional reduction also 
showed the discrimination of subclusters in the testing 
cohort (Fig. 3E). Submap was used to compare subclus-
ters in training and testing cohorts, as shown in Fig. 3F, 
the strong similarity between subclusters in training and 
testing cohorts. Considering the classification in ccRCC 
patients based on MRGs, we investigated whether rele-
vant signaling pathways varied between two subclusters. 

Fig. 1 Workflow chart of this study
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GSEA results showed that cluster 2 is associated with 
beta-alanine metabolism, fatty acid metabolism, glyc-
erolipid metabolism, histidine metabolism, peroxisome, 
PPAR signaling pathway, and starch and sucrose metabo-
lism (Fig. 3G).

Characterization of the tumor microenvironment (TME) 
infiltrating the metabolism-related subclusters
We further investigated the TME characteristics in sub-
clusters, ESTIMATE algorithm results indicated that 
the stromal score, immune score, and ESTIMATE score 
of cluster 2 higher than cluster 1, suggesting immune 
activation characteristics in cluster 2 (Fig.  4A). Then, 
we explored the differences of TEM-related pathways 
between subclusters, the results showed that immune 
checkpoint, epithelial-mesenchymal transition (EMT), 
WNT targets, nucleotide excision repair, G2M, antigen 
processing machinery, angiogenesis, DNA damage repair, 
DNA replication, PI3K, CD8 T effector, Pan TBRS, mis-
match repair, antigen processing pathways were more 
enriched in cluster 1 (Fig.  4B-C). These data suggested 
complex biological processes in cluster 1. Then, we com-
pared the fraction of immune cells between two subclus-
ters, and the results showed that CD8 T cells, gamma 
delta T cells, activated NK cells, macrophages M1, resting 
dendritic cells (DCs), resting mast cells were abundant in 
cluster 1, while memory activated CD4 T cells, T cells 
follicular helper (Tregs), Macrophage M0, neutrophils 
were increased in cluster 2 (Fig. 4D-F). These results sug-
gested that cluster 1 trended toward stromal and immune 
activation patterns, and cluster 2 was associated with the 
immunosuppressive phenotype.

Correlation of the immunotherapy response and 
metabolism-related subclusters
Considering the differences between the two subclusters, 
we investigated the different responsiveness of two sub-
clusters to immune checkpoint blockade (ICB) therapy. 
The results showed a significantly higher TIDE score of 

cluster 1 than cluster 2 (Fig. 5A). And the submap results 
indicated the patients of cluster 1 respond to anti-CTLA4 
treatment (Fig.  5B). Moreover, the GSVA results also 
supported that immune activation in cluster 1 than clus-
ter 2 via immune checkpoint, IFN, HLA, and immune 
activation pathways (Fig. 5C). This indicated the signifi-
cant differences in response to immunotherapy in two 
subclusters.

Correlation of the chemotherapy response and 
metabolism-related subclusters
Here, we also explored the differences in the chemothera-
peutic sensitivity between the two subclusters. Based on 
the GDSC database, we screened the sensitivity between 
the two subclusters to 138 common chemotherapeutic 
drugs, the results were shown in Fig.  6, IC50 values of 
CGP-082996, Dasatinib, CGP-60,474, Paclitaxel, WZ-1-
84, and AZ628 for cluster 1 less than cluster 2. These data 
indicated that the patients in cluster 1 were more sensi-
tive to CGP-082996, Dasatinib, CGP-60,474, Paclitaxel, 
WZ-1-84, and AZ628 than those in cluster 2.

Identification of the prognostic signature between 
metabolism-related subclusters
Previous data indicated the heterogeneity of each sample 
and discrimination of response for antitumor therapy. 
Thus, we further investigated the prognostic risk signa-
ture between metabolism-related subclusters. First of all, 
we screened 295 DEGs between two metabolism-related 
subclusters (Table S3, Fig.  7A-B). With univariable cox 
analysis, 279 prognostic DEGs were identified between 
two subclusters (Figure S3, Table S4). Under LASSO 
cox regression analysis, 15 significant prognostic genes 
were identified between two subclusters (Fig. 7C). Then, 
a 15-gene signature was constructed, including ANK3, 
WDR72, PLS1, SLC16A12, ASPA, EMX2, SMIM24, 
EMCN, FLRT3, LAMB3, PLG, IL20RB, MDK, CXCL5, 
PDK4 (Table S5). Those genes were incorporated into 
a multivariable cox model to identify the independent 

Fig. 2 Identification of the prognostic associated metabolism-related genes (MRGs). (A) Volcano plot showing the differentially expressed genes 
between KIRC samples and paracancerous samples. (B) Heatmap showing the differential expression of a total of 254 metabolic-related genes (MRGs)
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Gene P-value
GSTM3 0.001417
FECH 0.000174
DBT 1.00E-08
HADH 1.00E-08
AK3 0.004502
FMO5 0.006443
COLGALT1 2.10E-06
NNMT 0.011051
CROT 0.010349
TYMP 0.004195
ATP6V1C2 0
HSD11B2 0.000655
ENO2 0.005066
FDX1 0.005869
ALDH6A1 0
ENPP3 9.27E-05
DEGS2 0.008759
TYMS 0.005912
ATP6V1H 0.009395
ACAA1 0.048444
GPAT3 2.08E-05
SUCLG2 0.000698
ACADSB 1.40E-07
ABAT 0.000805
GPD1L 1.32E-05
GAPDH 0.009232
GLDC 0.009796
UQCRFS1 0.017291
PFKP 0.000214
NDUFS1 4.00E-08
PIP5K1B 0.013496
BCKDHB 0.000831
ALAD 1.81E-05
LDHD 3.80E-06
CHST11 0.018878
PCCA 0
L2HGDH 2.05E-05
CYP39A1 0.014135
CYP2J2 0.005771
HOGA1 0.044751
ATP6V1A 1.10E-07
GCNT4 0.000632
ACADM 0
SDHD 0.000205
CDS1 2.80E-07
OXCT1 0.005714
HMGCS2 0.000111
CAT 1.30E-07
AUH 9.40E-07
NNT 9.40E-07
SUCLA2 0
HIBADH 0.005361

Table 1 Univariable Cox analysis of the survival associated 
metabolic-related genes (GRGs) Gene P-value

OGDHL 5.50E-07
ALDOB 2.19E-05
SCD5 5.52E-05
DLD 0.000139
HSD3B7 0.000374
ACSM3 0.003205
ADA 0.000266
CA2 0.006295
FBP1 9.39E-06
DAO 9.21E-05
PLCB2 0.00596
GALM 0.002137
PFKM 0.006945
PSAT1 1.22E-06
TCIRG1 1.00E-08
PANK1 0
FABP5 0.000341
SLC22A13 0.0005
IL4I1 0.024682
FMO4 0.00245
PCK2 0.006542
HIBCH 5.60E-07
ACLY 5.55E-05
ALDH5A1 0.032277
RIMKLA 1.23E-06
ALOX5 0.007044
TREH 0.000136
RRM2 0.000114
HYAL1 4.96E-05
ACAT1 4.50E-06
ADH6 0.001803
EPHX2 2.60E-05
GOT1 0.000649
ETNK2 0.000179
G6PC 0
PLOD2 0.001599
ACOX2 0.02195
RGN 0.039127
PLCG2 0.016466
PCK1 1.55E-05
PAH 0.004396
CHDH 0.000218
PTGDS 0.00236
CYP1B1 0.00984
CA4 0.000358
CRYL1 0
RDH12 0.022127
LCAT 0.004081
LPIN3 0.001354
KL 0
HAO2 1.55E-06
GATM 0.000178
AKR7A3 0.000202

Table 1 (continued) 
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risk factors, and 9 genes, including SLC16A12, ASPA, 
SMIM24, FLRT3, LAMB3, PLG, IL20RB, CXCL5, PDK4, 
were identified as independent risk factors for ccRCC 
(Fig. 7D, Table S6). The risk score of each sample was cal-
culated based on risk factors, and the patients were dis-
tributed into high- and low-risk score groups according 
to the median risk score. The high-risk group showed a 
greater number of patient with dead than the low-risk 
group both in training and testing datasets (Fig.  7E-F). 
There was showed differential expression of risk factors 
between high- and low-risk groups in the training and 
testing datasets (Fig.  7E-F). As shown in Fig.  7G-H, the 
high-risk group showed the worse survival. To calculate 

the accuracy of the risk score for OS prediction using 
ROC curves, and the results showed that AUC for 1-, 
3-, 5-years in the training set was 0.821, 0.754, and 0.787 
(Fig.  7I). And the AUC for 1-, 3-, 5-years in the testing 
set was 0.846, 0.789, and 0.732 (Fig. 7J). These data indi-
cated the good performance of this risk score for OS 
prediction.

Construction of the survival predictive nomogram in ccRCC
We confirmed the molecular pattern, risk score, and clin-
ical characteristics, including age and stage, were inde-
pendent prognostic variables of the OS in the training set 
(Fig.  8A-B). We subsequently constructed a nomogram 
incorporating the molecular pattern, risk score, and clini-
cal characteristics (age and stage) for predicting the OS 
of ccRCC patients (Fig. 8C). The calibration curves tested 
the predicted probability of 1-, 3-, and 5-years (Fig. 8D-
F). These data suggested the nomogram integrating 
molecular pattern, risk score and clinical characteristics 
could boost the predictive efficiency of the prognosis of 
ccRCC patients.

Discussion
Metabolism programming has become a central feature 
of ccRCC, which involves tumor initiation, progression, 
resistance to antitumor treatment, and poor survival 
rates in ccRCC patients [23–25]. In the present study, 
we comprehensively analyzed the metabolism-related 

Fig. 3 Construction of metabolism-related subclusters for ccRCC. (A) The CDF curve for k = 2 to 10. (B) The consensus clustering matrix at k = 2. (C) 
Kaplan-Meier overall survival curves of the three clusters. (D) The t-SNE scatter plots show the classification into two ccRCC molecular subtypes based on 
the gene expression profiles in the TCGA database. (E) The t-SNE scatter plots show the classification into two ccRCC molecular subtypes based on the 
gene expression profiles in the GEO database (GSE73731 dataset). (F) Submap showing the similarity of two ccRCC molecular subtypes between TCGA 
and GEO databases. (G) GSEA has shown metabolism-related pathways enriched in cluster 2

 

Gene P-value
PTGES 0.002517
MAOA 0.003098
AGMAT 0.000536
ACSM5 0.003401
CYP4A22 0.000733
ALDH1L1 5.61E-05
AOX1 9.85E-05
CRABP2 1.80E-07
ENPP2 0.03243
CYP4A11 0.001423
MIOX 9.45E-05
AOC1 0.004642

Table 1 (continued) 
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molecular pattern and their characteristics in ccRCC. We 
identified the differentially expressed 254 MRGs between 
ccRCC tumor samples and non-tumor samples. Based 
on the differentially expressed 254 MRGs, 526 ccRCC 

patients from the TCGA database were clustered into 
two clusters and the clustering was verified by t-SNE and 
the GSE73731 dataset. Then, we investigated the biologi-
cal function, molecular characteristics, TME infiltration 
feature, responsiveness to ICB and target therapy, and 
prognostic values between two subclusters.

Biological function and molecular characteristics 
analyses indicated that cluster 2 showed a poor survival 
rate and was associated with beta-alanine metabolism, 
fatty acid metabolism, glycerolipid metabolism, histidine 
metabolism, peroxisome, and PPAR signaling pathway, 
and starch and sucrose metabolism. Beta-alanine is not 
an essential amino acid and exerts as a sports supplement 
to increase anaerobic endurance and athletic perfor-
mance, beta-alanine can be used as a potential antitumor 
agent in malignant breast epithelial cells, renal tumor 
cells, and cervical tumor cells [26, 27]. Another common 
and important amino acid metabolism is histidine metab-
olism, histidine catabolism increases the effectiveness of 
methotrexate treatment in cancers [28]. Serum histidine 
level is a potential predictive biomarker for patients with 
ccRCC [29, 30]. Fatty acid and its decomposition product 
glycerolipid metabolism are associated with tumor pro-
gression [31, 32]. The peroxisome is a metabolic organelle 
involved in lipid metabolism and cellular redox balance 
[33], regulation of the peroxisome proliferator-activated 
receptor (PPAR) contributes to cellular homeostasis 
by feedback regulation of the expression of enzymes 
that involve glucose, amino acid, and lipid metabolism 
[34]. Low levels of PPAR are associated with poor clini-
cal outcomes in hepatocellular carcinoma (HCC) and 
ccRCC patients [35]. The above shreds of evidence have 
demonstrated cluster 2 is associated with complex meta-
bolic processes, including lipid, amino acid, and glucose 
metabolism.

We also investigated the TME infiltration feature of two 
subclusters. The stromal score, immune score, and ESTI-
MATE score of cluster 2 were higher than in cluster (1) 
at CD8 T cells, gamma delta T cells, activated NK cells, 
macrophages M1, resting DCs, resting mast cells were 
abundant in cluster 1, while memory activated CD4 T 
cells, Tregs, Macrophage M0, neutrophils were increased 
in cluster (2) Furthermore, we found the stromal activa-
tion associated with biological processes, such as EMT, 
WNT targets, angiogenesis, and Pan TBRS significantly 
enriched in cluster 1 than in cluster 2. And the effector 
immune cells, such as CD8 T cells [36], and activated 
NK cells [37], were abundant in cluster (1) The gamma 
delta T cells represent a small population that performs 
complex immune regulatory functions and promotes 
tumor progression [38, 39], and exhibit the potential for 
cancer immunotherapy [40, 41]. The above finding indi-
cated cluster 1 might sensitive to ICB therapy, and cluster 
2 might poorly respond to ICB therapy. Consistent with 

Table 2 Clinicopathological features between clusters in The 
Cancer Genome Atlas cohort
Variables Cluster 1 

(N = 217)
Cluster 2 
(N = 309)

Overall 
(N = 526)

Stage
Stage I 84 (38.7%) 179 (57.9%) 263 (50.0%)
Stage II 25 (11.5%) 31 (10.0%) 56 (10.6%)
Stage III 59 (27.2%) 63 (20.4%) 122 (23.2%)
Stage IV 48 (22.1%) 34 (11.0%) 82 (15.6%)
Missing 1 (0.5%) 2 (0.6%) 3 (0.6%)
Prior malignancy
Clear cell adenocarci-
noma, NOS

214 (98.6%) 298 (96.4%) 512 (97.3%)

Renal cell carcinoma, 
NOS

3 (1.4%) 11 (3.6%) 14 (2.7%)

Diagnosis
no 190 (87.6%) 264 (85.4%) 454 (86.3%)
yes 27 (12.4%) 45 (14.6%) 72 (13.7%)
T
T1 88 (40.6%) 181 (58.6%) 269 (51.1%)
T2 33 (15.2%) 35 (11.3%) 68 (12.9%)
T3 87 (40.1%) 91 (29.4%) 178 (33.8%)
T4 9 (4.1%) 2 (0.6%) 11 (2.1%)
N
N0 104 (47.9%) 135 (43.7%) 239 (45.4%)
N1 12 (5.5%) 4 (1.3%) 16 (3.0%)
NX 101 (46.5%) 170 (55.0%) 271 (51.5%)
M
M0 161 (74.2%) 255 (82.5%) 416 (79.1%)
M1 45 (20.7%) 33 (10.7%) 78 (14.8%)
MX 9 (4.1%) 21 (6.8%) 30 (5.7%)
Missing 2 (0.9%) 0 (0%) 2 (0.4%)
Gender
female 56 (25.8%) 128 (41.4%) 184 (35.0%)
male 161 (74.2%) 181 (58.6%) 342 (65.0%)
Race
asian 4 (1.8%) 4 (1.3%) 8 (1.5%)
black or african american 21 (9.7%) 35 (11.3%) 56 (10.6%)
not reported 1 (0.5%) 6 (1.9%) 7 (1.3%)
white 191 (88.0%) 264 (85.4%) 455 (86.5%)
Age
> 60 110 (50.7%) 155 (50.2%) 265 (50.4%)
≤ 60 107 (49.3%) 154 (49.8%) 261 (49.6%)
Pharmaceutical
no 64 (29.5%) 125 (40.5%) 189 (35.9%)
not reported 102 (47.0%) 154 (49.8%) 256 (48.7%)
yes 51 (23.5%) 30 (9.7%) 81 (15.4%)
Radiation
no 82 (37.8%) 136 (44.0%) 218 (41.4%)
not reported 102 (47.0%) 150 (48.5%) 252 (47.9%)
yes 33 (15.2%) 23 (7.4%) 56 (10.6%)
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those finding and speculation, cluster 1 with higher TIDE 
score and respond to anti-CTLA4 treatment, and cluster 
2 couldn’t. Besides, immune checkpoint, IFN, HLA, and 
immune activation pathways enriched in cluster 1 than 
cluster 2, suggesting immune activation phenotype in 
cluster 1, and cluster 1 showed sensitivity to ICB therapy. 
Moreover, we also found cluster 1 more sensitive to CGP-
082996, dasatinib, CGP-60,474, Paclitaxel, WZ-1-84, and 

AZ628 than those in cluster (2) Dasatinib is an orally 
multi-target kinase inhibitor that emerges the antitumor 
effects in RCC patients by suppressing tumor cell prolif-
eration [42]. Paclitaxel is a first-line treatment for some 
tumors [43–45], and it is in combination with other che-
motherapy drugs for the treatment of RCC patients [46, 
47].

Fig. 4 Characterization of the tumor microenvironment (TME) infiltrating the metabolism-related subclusters (A) Patterns of the stromal score, 
immune score, and Estimate score between metabolic-related subtypes. (B)-(C) Heatmap and violin plots showing the TME-related pathways. (D) Land-
scape showing the immune cell infiltration in the metabolic-related subclusters. (E) Heatmap showing the distribution of immune cell infiltration in the 
metabolic-related subclusters. (F) The abundance of 22 immune cells between metabolic-related subclusters using ssGSEA
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Previous sections analyzed the biological function, 
molecular characteristics, TME infiltration feature, 
responsiveness to ICB, and target therapy of molecular 
subclusters. Here, we further investigated the prognostic 
values of metabolism-related clustering. We identified 
the 295 DEGs between two subclusters. And a 15-gene 
signature was constructed, including ANK3, WDR72, 
PLS1, SLC16A12, ASPA, EMX2, SMIM24, EMCN, 
FLRT3, LAMB3, PLG, IL20RB, MDK, CXCL5, PDK4. 
Then, SLC16A12, ASPA, SMIM24, FLRT3, LAMB3, PLG, 
IL20RB, CXCL5, and PDK4 were identified as risk fac-
tors for ccRCC patients. The prognostic values of those 
risk factors were verified by ROC curves and previous 
studies. Such as, SLC16A12 is a creatine transporter for 
creatine and guanidinoacetate in the kidney [48], and 
its expression level predicates a favorable prognosis for 
ccRCC patients [49]. LAMB3 is a common oncogene in 

tumors [50, 51], but its role and function of it remain 
undiscovered. Increasing IL20RB expression associates 
tumor progression and poor prognosis in papillary RCC 
[52], and relates to poor survival for ccRCC patients [53]. 
CXCL5 cytokine promotes RCC progression and can be 
used as the therapeutic target for RCC treatment [54, 55]. 
PDK4 is a metabolism gene that promotes tumor devel-
opment [56, 57], and acts as a prognostic biomarker in 
ccRCC [58].

Conclusion
In conclusion, a metabolism-related molecular pattern 
for ccRCC was constructed, and we also investigated the 
biological function, molecular characteristics, TME infil-
tration feature, responsiveness to ICB and target therapy, 
and prognostic values between two subclusters. Based on 
the differences, a prognostic signature and a risk model 

Fig. 6 Correlation of the chemotherapy response and metabolism-related subclusters Boxplots depicted the differences in the IC50 values of (A) 
CGP-082996, (B) dasatinib, (C) CGP-60,474, (D) Paclitaxel, (E) WZ-1-84, (F) AZ628 between two subclusters

 

Fig. 5 Correlation of the immunotherapy response and metabolism-related subclusters (A) Boxplot indicated the differences in TIDE score be-
tween two subclusters. (B) Submap showing the response to anti-PD1 and anti-CTLA4 treatment between two subclusters. (C) Violin plots showing the 
correlation between metabolic-related subclusters and immune checkpoint molecules
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were constructed for survival predicting in ccRCC. Our 
finding suppled a novel insight for ccRCC diagnosis and 
prognosis prediction. However, more experimental evi-
dence is needed to validated in a larger internal cohort, 
and the function of these MAGs in cellular phenotypes 
will also be discussed.

Fig. 7 Identification of the prognostic signature between metabolism-related subclusters (A) Volcano plot showing the DEGs between two sub-
clusters. (B) Heatmap showing the DEGs between two subclusters. (C) Left: Distribution of the coefficients of 15 genes at the optimal λ (grey line) for two 
subclusters. Right: LASSO regression model with 10-cross validation for selecting parameter that the optimal λ (dash line) which shows the minimum 
mean square error (red dots). (D) Forest plot indicated the nine risk factors identified by multivariable Cox regression analysis. (E)-(F) The risk score rank 
(up), the survival status (middle), and the expression of nine risk factors (bottom) between the high- and low-risk groups in TCGA-KIRC (training set) and 
E-MTAB-1980 (validation set) datasets. (G)-(H) KM OS curves for high- and low-risk groups in TCGA-KIRC and E-MTAB-1980 datasets. (I)-(J) Time-dependent 
ROC curves in 1-, 3-, 5-year OS time for high- and low-risk groups in TCGA-KIRC and E-MTAB-1980 datasets

 



Page 12 of 14Tai et al. BMC Urology          (2023) 23:147 

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12894-023-01317-3.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Supplementary Material 9

Author contributions
Junfeng Yang conceived and designed and revised the manuscript. Jinjun 
Leng and Rongfen Tai carried out the analyses and written the manuscript. 
Wei Li and Yuerong Wu provided methods.

Funding
Yunnan Provincial Department of Science and Technology - Kunming Medical 
University Applied Basic research joint project (202301AY070001-052). The 
First People’s Hospital of Yunnan Province Clinical Medical Center Open Project 
(2021LCZXXF-SZ05).

Data Availability
The data used in this study are freely available from TCGA, GEO, and 
ArrayExpress databases.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
Not applicable.

Fig. 8 Construction of the survival predictive nomogram in ccRCC (A)-(B) Forest plots indicated the independent prognostic variables by incorporat-
ing the clinicopathological characteristics (age and stage), risk score, and molecular clustering. (C) A nomogram for 1-, 3-, 5-year OS prediction by combin-
ing independent prognostic variables. (D)-(F) Calibration plots indicated the performances of the nomogram-predicted probability of 1-, 3-, 5-year OS

 

https://doi.org/10.1186/s12894-023-01317-3
https://doi.org/10.1186/s12894-023-01317-3


Page 13 of 14Tai et al. BMC Urology          (2023) 23:147 

Consent for publication
Not applicable.

Author details
1State Key Laboratory of Primate Biomedical Research, Institute of Primate 
Translational Medicine, Kunming University of Science and Technology, 
Kunming, Yunnan 650500, China
2Department of Urology, The First People’s Hospital of Yunnan Province, 
The Affiliated Hospital of Kunming University of Science and Technology, 
Kunming, Yunnan 650032, China

Received: 29 December 2022 / Accepted: 4 September 2023

References
1. Sung H, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of inci-

dence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J 
Clin. 2021;71(3):209–49.

2. Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.
3. Ricketts CJ, et al. The Cancer Genome Atlas Comprehensive Molecular char-

acterization of renal cell carcinoma. Cell Rep. 2018;23(1):313–326e5.
4. Jonasch E, Gao J, Rathmell WK. Renal cell carcinoma. BMJ. 2014;349:g4797.
5. Institute NC. Cancer stat facts: kidney and renal pelvis cancer. 2020.
6. Li QK, et al. Challenges and opportunities in the proteomic characterization 

of clear cell renal cell carcinoma (ccRCC): a critical step towards the personal-
ized care of renal cancers. Semin Cancer Biol. 2019;55:8–15.

7. Rini BI, et al. Society for Immunotherapy of Cancer consensus statement on 
immunotherapy for the treatment of renal cell carcinoma. J Immunother 
Cancer. 2016;4:81.

8. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment 
of metastatic clear cell renal cell carcinoma. Cancer Treat Rev. 2018;70:127–37.

9. Combe P, et al. Trial Watch: therapeutic vaccines in metastatic renal cell 
carcinoma. Oncoimmunology. 2015;4(5):e1001236.

10. Wood DE. J.T.s.c., National Comprehensive Cancer Network (NCCN) clinical 
practice guidelines for lung cancer screening. 2015. 25(2): p. 185–97.

11. Escudier B et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for 
diagnosis, treatment and follow-up. 2019. 30(5): p. 706–20.

12. Dey P, Kimmelman AC, DePinho RA. Metabolic Codependencies in the Tumor 
Microenvironment. Cancer Discov. 2021;11(5):1067–81.

13. Sun L, et al. Metabolic reprogramming for cancer cells and their microen-
vironment: beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer. 
2018;1870(1):51–66.

14. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic 
requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.

15. Pavlova NN, Thompson CB. The emerging Hallmarks of Cancer Metabolism. 
Cell Metab. 2016;23(1):27–47.

16. Biswas SK. Metabolic reprogramming of Immune cells in Cancer Progression. 
Immunity. 2015;43(3):435–49.

17. Xia L, et al. The cancer metabolic reprogramming and immune response. Mol 
Cancer. 2021;20(1):28.

18. Wettersten HI, et al. Metabolic reprogramming in clear cell renal cell carci-
noma. Nat Rev Nephrol. 2017;13(7):410–9.

19. Wolf MM, Rathmell WK, Beckermann KE. Modeling clear cell renal cell carci-
noma and therapeutic implications. Oncogene. 2020;39(17):3413–26.

20. Kim H et al. Loss of Von Hippel-Lindau (VHL) Tumor Suppressor Gene Func-
tion: VHL-HIF Pathway and Advances in Treatments for Metastatic Renal Cell 
Carcinoma (RCC). Int J Mol Sci, 2021. 22(18).

21. Chakraborty S, et al. Metabolic reprogramming in renal cancer: events of a 
metabolic disease. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188559.

22. Jennens RR, et al. Complete radiological and metabolic response of meta-
static renal cell carcinoma to SU5416 (semaxanib) in a patient with probable 
von Hippel-Lindau syndrome. Urol Oncol. 2004;22(3):193–6.

23. Chang S, Yim S, Park H. The cancer driver genes IDH1/2, JARID1C/ KDM5C, 
and UTX/ KDM6A: crosstalk between histone demethylation and hypoxic 
reprogramming in cancer metabolism. Exp Mol Med. 2019;51(6):1–17.

24. Lucarelli G et al. Integration of Lipidomics and Transcriptomics reveals repro-
gramming of the lipid metabolism and composition in Clear Cell Renal Cell 
Carcinoma. Metabolites, 2020. 10(12).

25. Zheng Q, et al. Deficiency of the X-inactivation escaping gene KDM5C in 
clear cell renal cell carcinoma promotes tumorigenicity by reprogram-
ming glycogen metabolism and inhibiting ferroptosis. Theranostics. 
2021;11(18):8674–91.

26. Vaughan RA, et al. β-alanine suppresses malignant breast epithelial cell 
aggressiveness through alterations in metabolism and cellular acidity in vitro. 
Mol Cancer. 2014;13:14.

27. Pandurangan M, et al. β-Alanine intercede metabolic recovery for ameliora-
tion of human cervical and renal tumors. Amino Acids. 2017;49(8):1373–80.

28. Frezza C. Histidine metabolism boosts cancer therapy. Nature. 
2018;559(7715):484–5.

29. Mustafa A, et al. Serum amino acid levels as a biomarker for renal cell carci-
noma. J Urol. 2011;186(4):1206–12.

30. Lee HO, et al. Combination of serum histidine and plasma tryptophan as a 
potential biomarker to detect clear cell renal cell carcinoma. J Transl Med. 
2017;15(1):72.

31. Qu YY, et al. Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty 
acid synthesis that promotes clear cell renal cell Carcinoma Growth. Cancer 
Res. 2020;80(2):319–33.

32. Ecker J, et al. The Colorectal Cancer Lipidome: identification of a 
robust tumor-specific lipid species signature. Gastroenterology. 
2021;161(3):910–923e19.

33. Kim JA. Peroxisome metabolism in Cancer. Cells, 2020. 9(7).
34. Vitale SG et al. Peroxisome Proliferator-Activated Receptor Modulation during 

Metabolic Diseases and Cancers: Master and Minions. PPAR Res, 2016. 2016: 
p. 6517313.

35. Andrejeva D, et al. Metabolic control of PPAR activity by aldehyde dehydroge-
nase regulates invasive cell behavior and predicts survival in hepatocellular 
and renal clear cell carcinoma. BMC Cancer. 2018;18(1):1180.

36. Lees JR. CD8 + T cells: the past and future of immune regulation. Cell Immu-
nol. 2020;357:104212.

37. Guillerey C. NK cells in the Tumor Microenvironment. Adv Exp Med Biol. 
2020;1273:69–90.

38. Paul S, Shilpi, Lal G. Role of gamma-delta (γδ) T cells in autoimmunity. J 
Leukoc Biol. 2015;97(2):259–71.

39. Jin C, et al. Commensal microbiota promote Lung Cancer Development via 
γδ T cells. Cell. 2019;176(5):998–1013e16.

40. Liu Y, Zhang C. The role of human γδ T cells in Anti-Tumor Immunity and their 
potential for Cancer Immunotherapy. Cells, 2020. 9(5).

41. Deng J, Yin H. Gamma delta (γδ) T cells in cancer immunotherapy; where it 
comes from, where it will go? Eur J Pharmacol. 2022;919:174803.

42. Sun J, et al. A tightly controlled Src-YAP signaling axis determines 
therapeutic response to dasatinib in renal cell carcinoma. Theranostics. 
2018;8(12):3256–67.

43. Bishop JF, et al. Paclitaxel as first-line treatment for metastatic breast cancer. 
The taxol investigational trials Group, Australia and New Zealand. Oncol (Wil-
liston Park). 1997;11(4 Suppl 3):19–23.

44. Tempero M, et al. Ibrutinib in combination with nab-paclitaxel and 
gemcitabine for first-line treatment of patients with metastatic pancreatic 
adenocarcinoma: phase III RESOLVE study. Ann Oncol. 2021;32(5):600–8.

45. Siefker-Radtke AO, et al. Front-line treatment with Gemcitabine, Paclitaxel, 
and Doxorubicin for patients with unresectable or metastatic Urothelial 
Cancer and poor renal function: final results from a phase II study. Urology. 
2016;89:83–9.

46. Jie KY, et al. Resveratrol enhances chemosensitivity of renal cell carcinoma to 
paclitaxel. Front Biosci (Landmark Ed). 2019;24(8):1452–61.

47. Choi KH, et al. Synergistic activity of Paclitaxel, Sorafenib, and Radiation 
Therapy in advanced renal cell carcinoma and breast Cancer. Transl Oncol. 
2019;12(2):381–8.

48. Verouti SN, et al. Solute carrier SLC16A12 is critical for creatine and 
guanidinoacetate handling in the kidney. Am J Physiol Renal Physiol. 
2021;320(3):F351–f358.

49. Mei J, et al. Decreased expression of SLC16A12 mRNA predicts poor 
prognosis of patients with clear cell renal cell carcinoma. Med (Baltim). 
2019;98(30):e16624.

50. Wang Y, et al. Upregulated LAMB3 increases proliferation and metastasis in 
thyroid cancer. Onco Targets Ther. 2018;11:37–46.

51. Zhang H, et al. LAMB3 mediates apoptotic, proliferative, invasive, and meta-
static behaviors in pancreatic cancer by regulating the PI3K/Akt signaling 
pathway. Cell Death Dis. 2019;10(3):230.

52. Cui XF, Cui XG, Leng N. Overexpression of interleukin-20 receptor subunit 
beta (IL20RB) correlates with cell proliferation, invasion and migration 



Page 14 of 14Tai et al. BMC Urology          (2023) 23:147 

enhancement and poor prognosis in papillary renal cell carcinoma. J Toxicol 
Pathol. 2019;32(4):245–51.

53. Guo H et al. Identification of IL20RB as a Novel Prognostic and Therapeu-
tic Biomarker in Clear Cell Renal Cell Carcinoma. Dis Markers, 2022. 2022: 
p. 9443407.

54. Guan Z, et al. Androgen receptor (AR) signaling promotes RCC progression 
via increased endothelial cell proliferation and recruitment by modulating 
AKT → NF-κB → CXCL5 signaling. Sci Rep. 2016;6:37085.

55. Giuliano S, et al. Resistance to lysosomotropic drugs used to treat kidney 
and breast cancers involves autophagy and inflammation and converges in 
inducing CXCL5. Theranostics. 2019;9(4):1181–99.

56. Li Z, et al. N(6)-methyladenosine regulates glycolysis of cancer cells through 
PDK4. Nat Commun. 2020;11(1):2578.

57. Pin F, et al. PDK4 drives metabolic alterations and muscle atrophy in cancer 
cachexia. Faseb j. 2019;33(6):7778–90.

58. Zhang Y et al. Glycolysis-Related Genes Serve as Potential Prognostic Bio-
markers in Clear Cell Renal Cell Carcinoma. Oxid Med Cell Longev, 2021. 2021: 
p. 6699808.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Construction of the metabolic reprogramming-associated gene signature for clear cell renal cell carcinoma prognosis prediction
	Abstract
	Introduction
	Methods
	Data collating and processing
	Screening the differentially expressed genes (DEGs) in ccRCC
	Construction of the MAG signature
	Development of metabolic-related subclusters using consensus clustering
	Gene set enrichment analysis (GSEA)
	Estimation of the tumor microenvironment (TME) cell infiltration
	Estimation of the immune cell landscape
	Analysis of the core biological pathways of ccRCC
	Prediction of immunotherapy response between clusters
	Prediction of drug sensitivity between clusters
	Construction of the risk signature and model
	Construction of predictive nomogram of ccRCC patients
	Statistical analysis

	Results
	Identification of the prognostic associated metabolism-related genes (MRGs)
	Construction of metabolism-related subclusters for ccRCC
	Characterization of the tumor microenvironment (TME) infiltrating the metabolism-related subclusters
	Correlation of the immunotherapy response and metabolism-related subclusters
	Correlation of the chemotherapy response and metabolism-related subclusters
	Identification of the prognostic signature between metabolism-related subclusters
	Construction of the survival predictive nomogram in ccRCC


	Discussion
	Conclusion
	References


