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Abstract 

Background Prostate cancer (PCa) is the most prevalent tumor in men, and Prostate-Specific Antigen (PSA) serves 
as the primary marker for diagnosis, recurrence, and disease-free status. PSA levels post-treatment guide physicians 
in gauging disease progression and tumor status (low or high). Clinical follow-up relies on monitoring PSA over time, 
forming the basis for dynamic prediction. Our study proposes a joint model of longitudinal PSA and time to tumor 
shrinkage, incorporating baseline variables. The research aims to assess tumor status post-treatment for dynamic 
prediction, utilizing joint assessment of PSA measurements and time to tumor status.

Methods We propose a joint model for longitudinal PSA and time to tumor shrinkage, taking into account baseline 
BMI and post-treatment factors, including external beam radiation therapy (EBRT), androgen deprivation therapy 
(ADT), prostatectomy, and various combinations of these interventions. The model employs a mixed-effect sub-model 
for longitudinal PSA and an event time sub-model for tumor shrinkage.

Results Results emphasize the significance of baseline factors in understanding the relationship between PSA trajec-
tories and tumor status. Patients with low tumor status consistently exhibit low PSA values, decreasing exponentially 
within one month post-treatment. The correlation between PSA levels and tumor shrinkage is evident, with the con-
sidered factors proving to be significant in both sub-models.

Conclusions Compared to other treatment options, ADT is the most effective in achieving a low tumor status, 
as evidenced by a decrease in PSA levels after months of treatment. Patients with an increased BMI were more likely 
to attain a low tumor status. The research enhances dynamic prediction for PCa patients, utilizing joint analysis of PSA 
and time to tumor shrinkage post-treatment. The developed model facilitates more effective and personalized 
decision-making in PCa care.
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Background
Prostate Cancer (PCa) is a major cause of cancer-related 
issues in men. According to Siegel et  al. [1], almost 
1.4 million new cases are registered each year worldwide. 
Diagnosis of PCa is a challenging task due to the involve-
ment of many risk factors and biomarkers [2]. Treatment 
options include external beam radiotherapy (EBRT), 
androgen deprivation therapy (ADT), prostatectomy, 
and combinations thereof, chosen based on the sever-
ity of cancer [3]. EBRT and ADT in combination are the 
most appropriate treatments for moderate to higher-risk 
cancer [4]. Patients are monitored during and after treat-
ment to get disease insights for PSA measurements [5], 
which is a serine protease protein biomarker discharged 
by prostate [6]. Sheikh et al. [7] investigated the associa-
tion between longitudinal PSA and survival outcomes to 
explore the time-to-low or high-grade PCa.

Interest in personalized medicine has been increasing 
in recent years in the biomedical fields of research, and 
physicians are accustomed to customizing treatment 
decisions by monitoring biomarkers of disease progres-
sion to improve medical care and patients’ well-being. 
For example, monitoring a patient’s PSA level allows 
clinicians to make predictions about the recurrence of 
PCa after treatment [8]. However, a separate analysis of 
longitudinal biomarker data and event time outcomes 
may produce misleading estimates by ignoring any pos-
sible dependence structure between both outcomes. Joint 
modelling of longitudinal and event time data is preferred 
in this case as compared to separate analyses to fully uti-
lize the available information and obtain unbiased results 
[9]. Joint modelling is a versatile approach for deriving 
event time probabilities to forecast future events, consid-
ering various associated structures for longitudinal and 
event time processes, thereby providing better predic-
tions about individuals [10].

The joint modelling strategy for dynamic prediction 
utilizes joint information on tumor shrinkage and PSA 
measurements, allowing it to make updated predictions 
for PCa patients, aiming to provide patient-specific tra-
jectories of PCa progression and time-to-event (TTE) 
data. For this purpose, longitudinal biomarker data are 
collected, with the primary outcome consisting of the 
time until the occurrence of a pre-specified event. Some-
times, multiple longitudinal outcomes of different types 
are collected [11, 12], which may have an association with 
TTE outcomes to discover inherent characteristics of 
patients and gain insights into disease progression. It is 
also interesting for researchers to obtain subject-specific 
predictions for one of the outcomes, whether longitudi-
nal or event time [10, 13].

The framework of individual dynamic predictions is 
based on available information related to future events. 

Dynamic prediction models support medical decision-
making, where changes in covariates modify over time 
to predict an event occurring in the future. Changes 
over time update the prognosis, accounting for changes 
in biomarkers and patients’ characteristics. All appropri-
ate changes must be included in study variables to opti-
mally assess prognosis. An optimal prediction model is 
employed to intuitively predict future outcomes, facilitat-
ing patient-informed decision-making [14].

Quantifying the risk of an event related to disease pro-
gression at the individual level is facilitated by informa-
tion collected at the diagnosis stage and during follow-up 
visits [15]. Ferrer et  al. [16] compared the accuracy of 
survival predictions between joint and landmark mod-
elling. Maziarz et  al. [17] applied conditional survival 
models to obtain predictions and concluded that condi-
tional models exhibit better computational efficiency in 
prediction compared to joint models. Single and multiple 
markers have been employed to enhance the prediction 
of future events [18].

Based on already reported biomarkers, most stud-
ies considered PSA to be overdiagnosed at a rate rang-
ing from 1.7 to 67% [19]. This research aims to assess 
the tumor status (low or high) of PCa patients’ post-
treatment (utilizing EBRT, ADT, prostatectomy, and 
combinations) with a PSA level of ≥ 4 ng/ml. It proposes 
the best-fitted joint model to illustrate any association 
between longitudinal PSA and the time to tumor status. 
In addition, the proposed joint model is used to dynami-
cally predict tumor status within a fixed time for a sub-
ject that is still at risk before time t [10]. Many authors 
have studied future event probabilities for individuals 
based on joint modelling of longitudinal measurements, 
event time outcomes, and other covariates [20].

This article develops a dynamic prediction model, uti-
lizing longitudinally collected PSA to predict the future 
tumor status for PCa patients after treatment. The best 
longitudinal sub-model and event time sub-model are 
jointly specified for prediction purposes, in such a way 
that longitudinally assessed continuous PSA is utilized as 
an event time predictor.

Materials and methods
Study data
Current study focuses on 1504 men with primary PCa 
and treated by EBRT, ADT, prostatectomy, or a combi-
nation of these interventions. The dataset for this study 
was obtained from a renowned cancer hospital in Paki-
stan. Ethical approval was secured from the departmen-
tal head and dean of sciences at the University of the 
Punjab, with permission granted by the hospital author-
ity. Patients registered at the hospital between 2012 and 
2019, diagnosed with PCa, and followed for at least two 
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visits were included in the study. The data were manually 
entered into Excel sheets from patients’ files, ensuring 
completeness and accuracy while excluding any insuffi-
cient information. During follow-up, treatment efficacy is 
assessed by observing the patients’ tumor status, detect-
ing local or distant recurrence, and noting instances of 
death, whether attributed to PCa or not. Specifically, our 
focus is on the time taken for tumor shrinkage, a param-
eter monitored by physicians through regular visits and 
observing PSA measurements after the initial treatment. 
PSA measurements were collected between the end 
of initial treatment and the occurrence of study event, 
which is tumor shrinkage up to satisfactory level or event 
not happened at the end of study period. As shown in 
Table  1, this study observed post-treatment PSA levels 
in the log scale (logPSA), BMI (kg/m2), time to tumor 
shrinkage (in months), and treatment (categorized into 
7 groups: 2, 3, 4, 5, 6 versus 1 = ADT as a reference) 
variables.

Repeated PSA measurements are taken during check-
ups; its increased level after treatment indicates the 
growth of cancer cells. The PSA individual trajectories 
collected between the end of initial treatment and the 
occurrence of the event are depicted in Fig.  1. In gen-
eral, this longitudinal process highlights variations in the 
biomarker’s long-term changes, reflecting both “tumor 
shrinkage” and instances of “censorship”, for example, 
based on study aim which is to illustrate potential rela-
tionship between PSA and time until patients achieve a 
satisfactory tumor status as directed by physicians.

The time to tumor shrinkage represents the outcome 
variable categorized as ‘Yes’ for patients with the event of 
interest or ‘No’ for those patients who did not experience 
tumor shrinkage or left the follow-up study. ‘Yes’ is coded 
as 1 and ‘No’ is coded as 0.

Considering the impact of PSA levels on PCa patients’ 
recovery, utilizing a statistical model is crucial for under-
standing the relationship between PSA measurements 
and tumor status. The dynamic progression of PCa varies 
among patients, highlighting the PSA biomarker’s signifi-
cance in describing disease progression and its’ correla-
tion with tumor status. This potential is unveiled through 
the combined analysis of repeated PSA measurements 
and time to tumor shrinkage variables. Table 1 illustrates 
the baseline characteristics of PCa patients. The median 
follow-up number of times is 3 per patient with a range of 
1 to 5, which are distributed unequally among individu-
als. Two outcomes are distributed as logPSA(1.96± 2.03), 
and shrinkage of tumor (Yes, No). The event of interest 
for this study is individuals’ condition (1: tumor shrink-
age, 0: right censored) at the end of follow-up time, from 
1,504 patients 960 observed events of interest, and 544 
were right censored.

Statistical modelling and analysis
A joint model [21, 22], incorporating mixed-effects and 
event time components, has been developed to capture 
the relationship between PSA and tumor status. The 
mixed-effects model describes the evolution of PSA over 
time, taking into account both fixed and random effects. 

Table 1 Baseline characteristics

Right Censored
(N = 544)

Low
(N = 960)

Overall
(N = 1504)

PSA
 Mean (SD) 40.5 (17.3) 29.3 (14.7) 33.4 (16.6)

 Median [Min, Max] 41.8 [3.35, 129] 30.1 [0.280, 89.7] 33.7 [0.280, 129]

BMI
 Mean (SD) 19.1 (2.27) 19.7 (2.04) 19.5 (2.14)

 Median [Min, Max] 19.2 [14.0, 26.5] 19.8 [14.1, 26.0] 19.6 [14.0, 26.5]

Treatment
 ADT 108 (19.9%) 220 (22.9%) 328 (21.8%)

 ADT + EBRT 168 (30.9%) 185 (19.3%) 353 (23.5%)

 ADT + Prostatectomy 49 (9.0%) 29 (3.0%) 78 (5.2%)

 ADT + Prostatectomy + EBRT 16 (2.9%) 11 (1.1%) 27 (1.8%)

 EBRT 101 (18.6%) 377 (39.3%) 478 (31.8%)

 Prostatectomy 83 (15.3%) 78 (8.1%) 161 (10.7%)

 Prostatectomy + EBRT 19 (3.5%) 60 (6.3%) 79 (5.3%)

Time
 Mean (SD) 224 (83.9) 250 (90.1) 241 (88.8)

 Median [Min, Max] 218 [64.0, 458] 248 [68.0, 486] 237 [64.0, 486]
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The event time sub-model, employing the Cox propor-
tional hazards model, analyzes censored data, with base-
line predictors including BMI and treatment.

A simple mixed-effects model for longitudinal data 
with general form is written as,

where, ui(t) is mean of predictor for both fixed and ran-
dom effects, εi(t) is an error term. Investigation of the 
effect of covariates on repeated PSA measurements can 
be applied using quadratic, cubic, or non-parametric fits.

An event time sub-model is formulated for censored 
data, as not all patients experienced an event of interest. 
Mostly right censoring occurs, due to dropouts before 
the end of follow-up time [23]. Cox proportional hazards 
(PH) [24] is the most popular semi-parametric model to 
analyze event time data [25], which is formulated as,

where π0(t) is a baseline hazard function at time t , ωi 
denotes baseline predictors for regression coefficients’ 
vector γ . The Kaplan-Meier event curve in Fig.  2 illus-
trates the time to low-status tumor following treatment 
combinations. It indicates an increased probability of 
time to low tumor with the administered treatments, as 
compared to other treatments ADT observed more effec-
tive in terms of time to low tumor status. The baseline 
hazard can either be unspecified or parametrically mod-
eled using appropriate distributions such as Weibull, 
Gamma, Exponential, and others [26].

(1)yi(t) = ui(t)+ εi(t),

(2)πi(t) = π0(t)exp γ Tωi ,

The joint model specifies the hazard of the event, which 
is dependent on individual characteristics of its longitu-
dinal trajectory, as follows

where, Mi(t) = {µi(s), 0 ≤ s < t} is a history of unob-
served longitudinal process µi(s) up to time t, and ωi is a 
vector of time-varying covariates.

Constructing a joint model involves integrating vari-
ous association structures to unify longitudinal and event 
time processes. Commonly used association structures 
include current value, shared random effects, and cur-
rent value and slope [27]. The current value association 
structure assumes that the true value µi(t) of longitudinal 
measure at time t is predictive of the risk of experiencing 
an event at the same time. The Cox’s PH sub-model with 
this association structure is written as,

α is a vector of associated parameters to quantify the 
association between longitudinal process and hazard for 
the event at time t . It is interpreted as one unit increase 
in current value is associated with exp(α1) increase in 
risk of event at the same time, given that event has not 
occurred before t.

In a shared random effects association structure, ran-
dom effects from the longitudinal sub-model are incorpo-
rated into the relative risk sub-model as linear predictors, 
facilitating the sharing of random effects between the 

(3)πi(t) = lim∆t→0

Pr
{

t ≤ T
∗

i
+∆t|T

∗

i
≥ t,Mi(t),ωi

}

∆t
,

(4)πi(t) = π0(t)exp
(

γ Tωi + α1µi(t)
)

,

Fig. 1 Individual and mean profiles of observed PSA data over time
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two [28]. Another association structure, current value 
and slope, establishes a linkage between event time and 
longitudinal sub-models by adding the rate of change of 

measurement at time t  estimated by taking the deriva-
tive of µi(t) with respect to time. A sensitivity analysis is 
conducted to select the appropriate association structure. 
The structure is chosen based on the BIC criteria, opting 
for the model with the lowest BIC value.

For dynamic prediction, the three-step process is 
employed to develop a prediction model that accounts 
for both baseline patient characteristics and longitudinal 
measurements of PSA values.

Joint PSA and time to tumor status model
We utilized a series of joint logPSA and time-to-tumor-
status models, exploring diverse options for both longi-
tudinal and event time sub-models, along with various 
association structures for joint modelling. The first step 
describes the evolution of PSA measurements over time, 
and the second step utilizes this information to model 
event time. Finally, dynamic prediction is performed 
using the proposed joint model. As a preliminary step, a 
covariate selection process is carried out for a sub-model 
of the longitudinal outcome, and heterogeneity in resid-
ual plots is mitigated using a logarithmic scale of PSA.

A mixed-effects model is proposed for the evolution 
of PSA over time to account for the positive correla-
tion between observed measurements within the same 
patient. This model includes time (in months) and base-
line treatment variables (ADT, prostatectomy, EBRT, and 

combinations of these). Based on BIC [29] criteria, the 
best model for logPSA repeated measures is formulated 
as,

In the event time process, following the initial covariate 
selection, treatment and BMI are identified as significant 
covariates.

Joint model prediction based on event time prob-
abilities and future PSA observations for any 
new patient j , utilizing longitudinal PSA values 
Mi(t) = {µi(s), 0 ≤ s < t}  and baseline covariates ωj . 
Conditional probability πj(u|t) is used to predict about 
patient j , who will have low tumor for time u > t observ-
ing PSA. Using information available at time t , prediction 
is updated dynamically at any follow-up visit time t ′, such 
that t ′ = t < t ′ < u to produce a new prediction ωj

(

u|t ′
)

.

Results
Joint modelling approach for dynamic prediction of 
tumor progression and shrinkage allows individual pre-
dictions to be made for PCa patients, based on PSA 
measurements after treatment. This study aims to pro-
vide patient-specific trajectories of PCa progression and 
TTE. Different forms of association that relate longitudi-
nal PSA with time-to-tumor status are assessed, and pre-
dictions are averaged over different models via Bayesian 
model averaging. Individual follow-up time ranged from 
64 to 486 days, with a median of 237 days. Estimates of 

(5)yij = (β0+b0i)+(β1+b1i)Monthsi+β2Months2i +β3Treatmenti+β4Treatmenti×Monthsi+β5Treatmenti×Months2i +εi(t)

(6)πi(t) = π0(t)exp(β1BMIi + β2Treatmenti),

Fig. 2 Kaplan-Meier estimates of the probability of survival for individuals on each treatment
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associated structure parameters are considered in two to 
three models, which indicated that PCa tumor shrinkage 
at any time point is associated with the rate of change in 
PSA level.

The model having the interaction effect of treatment 
with degree-2 polynomial of months best fits the data, on 
the basis of low BIC. To make sure about model fitting for 
longitudinal data, R2 criteria were applied [30]. Marginal 
R2 explained the proportion of variance in fixed effects, 
and conditional R2 explained the proportion of variance 
in fixed and random effects. In our case, the proportion 
of variance explained in the chosen longitudinal model is 
90%; therefore, this final sub-model is an excellent fit to 
pursue our joint modelling estimation procedure.

The Cox PH sub-model is employed for event time data 
with a nonparametric baseline hazard function, following 
an assessment of the PH assumption using the Schoen-
feld Residuals Test [31].

B- and regression splines approaches can also be 
employed, with different numbers and positions of 
nodes, and criteria such as BIC are used to determine the 
best nodes [11].

 Joint model applied to explore the association between 
longitudinal trajectories in PSA and tumor status after 
treatment is presented in Table  2, including parameter 
estimates and 95% CI with the current value association 
structure. Variance-covariance matrix for the current 

value association structure is 
[

0.574

−0.265

−0.265

0.412

]

 , with a 

0.708 residual value. Results depict that follow-up time has 
a significant negative effect on PSA levels, with increasing 
months in treatment associated with decreases in PSA lev-
els. Associated parameters show that PSA and time to 
tumor status both are associated positively, by increasing 
one unit in the current value of longitudinal PSA, the 
chances of having low tumor increases with 0.368 units at 
the same time, given that shrinkage of the tumor did not 
occur before that particular time. It is also assumed that 
this association rate is the same across individuals. In 
terms of treatment options, ADT has a positive significant 
effect on PSA levels as compared to other treatment com-
binations.  Months2 has a negative significant effect on 
decreasing PSA level with an average rate 0.019. Months 
with all treatment combinations have a significant effect 
on patients’ PSA measurements. ADT + EBRT, Prostatec-
tomy + EBRT, and EBRT with second-degree polynomial 
of follow-up time (months) interactions have a negative  
significant effect on PSA with average change. The event time 
sub-model has a significant predictor of BMI, by increasing 
one unit in BMI, patients have a good chance of having a 
good status on average 0.119. Treatment combinations 
ADT + Prostatectomy, ADT + Prostatectomy + EBRT, EBRT, 
Prostatectomy, and Prostatectomy + EBRT, significantly have 

affected having good tumor status as an event of interest 
with time.

In joint modelling for dynamic prediction, the choice 
of predictors is theoretically integrated into both sub-
models. The longitudinal sub-model aims to describe the 
trajectory of a variable over time for each individual, con-
sidering measurement noise, while the event time model 
forecasts the tumor shrinkage after treatment. Any pre-
dictor that enhances the prediction accuracy of both sub-
models can be included. Joint modelling is employed for 

Table 2 Parameter estimates and 95% CI of joint model with 
current value association structure

Parameter Value 2.5% 97.5%

Longitudinal Process

Intercept 3.641 3.567 3.717

Months -0.643 -0.700 -0.587

Treatment
 ADT+EBRT 0.180 0.077 0.285

 ADT+Prostatectomy 0.232 0.050 0.417

 ADT+Prostatectomy+EBRT 0.378 0.094 0.655

 EBRT -0.978 -1.078 -0.881

 Prostatectomy 0.067 -0.072 0.202

 Prostatectomy+EBRT -0.267 -0.518 -0.032

I(Month2) -0.019 -0.024 -0.013

Months:Treatment
 Months:ADT+EBRT 0.270 0.190 0.350

 Months:ADT+Prostatectomy 0.428 0.302 0.554

 Months:ADT+Prostatectomy+EBRT  0.538 0.341 0.730

 Months:EBRT -0.424 -0.496 -0.350

 Months:Prostatectomy 0.278 0.187 0.372

 Months:Prostatectomy+EBRT 0.423 0.292 0.556

Treatment:I(Months2)
 ADT+EBRT:I(Months2) -0.009 -0.017 -0.001

 ADT+Prostatectomy:I(Months2) -0.001 -0.011 0.009

 ADT+Prostatectomy+EBRT:I(Months2) 0.002 -0.011 0.016

 EBRT:I(Months2) 0.038 0.029 0.047

 Prostatectomy:I(Months2) 0.008 -0.001 0.017

 Prostatectomy+EBRT:I(Months2) -0.017 -0.030 -0.049

 Event Time Process

BMI 0.119 0.028 0.204

Treatment
 ADT+EBRT -0.192 -0.467 0.093

 ADT+Prostatectomy -0.486 -0.902 -0.100

 ADT+Prostatectomy+EBRT -1.329 -1.930 -0.764

 EBRT 0.721 0.427 1.025

 Prostatectomy -0.468 -0.783 -0.132

 Prostatectomy+EBRT -1.023 -1.534 -0.539

Assoct 0.368 0.309 0.426

tauBs 1.827 0.622 4.318
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dynamic predictions of events at any future time based 
on the information available up to a specific time point, 
denoted as t > 0 [32]. Figure  3 illustrates the future pre-
diction for patient 1369 based on the last observed PSA 
value in month 0.912.

We evaluate the discrimination of the model for patients 
who observed the event and those who did not by using 
the time-dependent estimated Area Under the Curve 
(AUC). According to AUC criteria, values near 0.5 indicate 
random chance, while values closer to 1 indicate better 
model discrimination [33]. The time-dependent AUC for 
our proposed joint model is 0.8568 at 18 months, utilizing 
information up to 15 months, with 8 subjects still at risk.

Discussion
Our results support the hypothesis of an association 
between PSA measurements and time to tumor status. 
We found that the time to prostate low tumor status 
increases with lower level of PSA and a faster change in 
rate of low tumor status incorporating initial treatment. 
Only treatment, and time are statistical significance as 
predictors of PSA measurements, while baseline BMI and 
treatment were identified as predictors of lower tumor 
status for prostate cancer patients.

This article also demonstrates the utilization of joint 
modelling to predict tumor status using longitudinal and 
event time data, specifically focusing on PSA measure-
ments post-treatment. Applying models that consider 
all available information over time enhances individual 
prognostication. We estimated the joint modelling of 
longitudinal PSA with time and time to tumor status 
after treatment, incorporating a model that accounts 

for measurement error due to time-dependent covariate 
endogenous effects and non-random dropout. The cur-
rent value association structure was employed to predict 
tumor status for PCa patients’ post-treatment by com-
bining baseline covariates and longitudinal PSA.

Results indicate the model’s ability to predict tumor 
progression based on PSA post-treatment. The chosen 
model includes a quadratic trajectory for PSA with sig-
nificant associations between follow-up time, treatment, 
and PSA levels. The event time sub-model highlights the 
impact of BMI and treatment on the likelihood of tumor 
shrinkage. The results align with existing literature and 
clinical knowledge, highlighting a strong association 
between observed longitudinal PSA and PCa tumor sta-
tus post-treatment. Notably, our proposed model sug-
gests a substantial effect of PSA values in conjunction 
with treatment over the course of time. Our contribution 
lies in employing joint modelling techniques to efficiently 
estimate predictors for PSA trajectories that impact the 
time to PCa tumor status. The estimation of low PCa 
tumor status, based on the complete historical record of 
PSA evaluations for each patient, adds significant value.

While our research serves as an initial step, there are 
limitations. First, it focuses solely on the PSA biomarker, 
and future studies should explore associations among 
multiple biomarkers. Second, the model includes limited 
covariates, and incorporating additional time-varying 
covariates could enhance predictive ability.

The study underscores the significance of joint mod-
elling in predicting tumor status based on PSA. The 
proposed model’s capacity to integrate both baseline 
characteristics and longitudinal PSA data enhances indi-
vidual prognostication. Future endeavors will delve into 
the influence of additional longitudinal biomarkers and 
time-varying covariates, expanding upon the groundwork 
established in this study [34, 35]. Di Minno et  al. [36] 
discussed the significance of 8-hydroxy-2-deoxyguano-
sine (8-OHdG) and 8-iso-prostaglandin F2α (8-IsoF2α) 
biomarkers in evaluating radicality and potential local 
recurrence after PCa surgery. Our future plan involves 
illustrating the joint evaluation of 8-OHdG, 8-Iso-PGF2α 
and time to local recurrence, after different treatment 
options, and exploring possible association structures to 
enhance dynamic prediction in a long-term follow-up 
study. This pursuit aims to refine predictive models and 
provide valuable insights for clinical decision-making 
regarding PCa treatment and risk prediction.

Conclusions
The joint modelling strategy proves effective in analyz-
ing the correlation between repeated PSA measurements 
and tumor status in PCa patients. It is well observed that 
PSA levels decrease in patients who received ADT, and 

Fig. 3 Observed (star) and estimated (red line) PSA till time of last 
observed value; and event time probability predicted at time of last 
observed PSA for patient 1369
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among these patients, a low tumor status is associated 
with a one-unit increase in BMI, compared to patients 
who received other treatments and had a low BMI. While 
it might seem plausible to derive inferences about the 
association between PSA measurements and tumor sta-
tus through linear mixed models for time to tumor sta-
tus, it is crucial to note that these models can yield biased 
results in the presence of nonrandom dropout. Addition-
ally, fitting such models requires calculating the time 
elapsed between each follow-up and low tumor status, 
limiting the analysis to individuals with known event 
times, potentially leading to a smaller and biased sample. 
The joint modeling approach employed here addresses 
these issues, specifically designed to mitigate biases from 
nonrandom dropout. Patients who continued follow-up 
until the end of the study period and those whose physi-
cians were dissatisfied with their tumor status are treated 
as censored, ensuring their inclusion in the analyses and 
preventing exclusion biases.

The quality of our results hinged on selecting a fitting 
model for the data. While many studies typically employ 
likelihood information criteria for selecting joint mod-
els, our research highlights that preferences in terms of 
model fitting complexity and dynamic prediction can dif-
fer. We rigorously assessed potential models, ultimately 
choosing the best fit based on criteria, particularly those 
recommended for longitudinal and event time data. The 
exploration of different association structures enhances 
the model’s robustness. Future studies should explore 
multiple biomarkers and additional covariates to improve 
predictive models for PCa treatment and risk prediction.
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