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Abstract 

Background  Kidney clear cell carcinoma (KIRC) is the most common subtype of renal cell carcinoma. Peroxisomes 
play a role in the regulation of tumorigenesis and cancer progression, yet the prognostic significance of peroxisome-
related genes (PRGs) remains rarely studied. The study aimed to establish a novel prognostic risk model and identify 
potential biomarkers in KIRC.

Methods  The significant prognostic PRGs were screened through differential and Cox regression analyses, 
and LASSO Cox regression analysis was performed to establish a prognostic risk model in the training cohort, which 
was validated internally in the testing and entire cohorts, and further assessed in the GSE22541 cohort. Gene Ontol-
ogy (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed 
to explore the function and pathway differences between the high-risk and low-risk groups. The relationship 
between risk score and immune cell infiltration levels was evaluated in the CIBERSORT, ESTIMATE and TIMER data-
bases. Finally, potential biomarkers were identified and validated from model genes, using immunohistochemistry.

Results  Fourteen significant prognostic PRGs were identified using multiple analyses, and 9 genes (ABCD1, ACAD11, 
ACAT1, AGXT, DAO, EPHX2, FNDC5, HAO1, and HNGCLL1) were obtained to establish a prognostic model via LASSO 
Cox regression analysis. Combining the risk score with clinical factors to construct a nomogram, which provided sup-
port for personalized treatment protocols for KIRC patients. GO and KEGG analyses highlighted associations with sub-
stance metabolism, transport, and the PPAR signaling pathways. Tumor immune infiltration indicated immune 
suppression in the high-risk group, accompanied by higher tumor purity and the expression of 9 model genes 
was positively correlated with the level of immune cell infiltration. ACAT1 has superior prognostic capabilities in pre-
dicting the outcomes of KIRC patients.

Conclusions  The peroxisome-related prognostic risk model could better predict prognosis in KIRC patients.
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Background
Renal cell carcinoma (RCC) is one of the most common 
malignancies in the world [1], comprising three primary 
types: kidney renal clear cell carcinoma (KIRC), which 
accounts for approximately 75% of all renal cancers; 
papillary renal cell carcinoma (pRCC); and chromo-
phobe cell carcinoma (ChRCC) [2, 3]. What’s more, in 
contrast to pRCC and ChRCC patients, KIRC patients 
often face a worse prognosis and heightened propensity 
for metastasis. The early symptoms are subtle, while the 
pathogenesis in advanced stages is intricately multifac-
eted, contributing to metastases occurring in 20-30% of 
patients upon tumor detection [4]. The initial treatment 
for KIRC typically involves partial or radical nephrec-
tomy, yet about 30% of patients experience postoperative 
recurrence [5], and advanced therapeutic ways, includ-
ing molecular targeted therapy and immunotherapy, 
have been employed, but their outcomes remain less 
than optimal. Currently, the etiology of KIRC remains 
unidentified, and the absence of an effective prognostic 
prediction model further compounds the clinical chal-
lenge. Consequently, the identification of biomarkers and 
the construction of a reliable model hold crucial clinical 
significance for enhancing the prognostic evaluation of 
KIRC.

The peroxiredoxin family, widely distributed across 
prokaryotes and eukaryotes, stands out as crucial anti-
oxidants with peroxide-scavenging activity, and peroxi-
somes are predominantly found in hepatocytes and renal 
proximal tubular epithelial cells in mammalian tissues. 
Peroxisomes have been shown to be effective in destroy-
ing hydrogen peroxide produced by metabolism [6]. 
What’s more, recent research has highlighted the pivotal 
role of peroxisomes in the tumorigenesis and progression 
of KIRC [7]. Furthermore, peroxisomes actively partici-
pate in lipid metabolism and the peroxisomal-oxidation 
system involves the metabolism of long-chain acyl-coen-
zyme A (acyl-CoA), generating H2O2 as a byproduct 
[8]. Numerous studies have consistently reported the 
upregulation of various peroxisomal proteins in tumors, 
showcasing associations with tumor stage, infiltration, 
recurrence, and prognosis. Notably, peroxisome-related 
genes have been identified as regulators of tumor pro-
gression, and their significance in the intricate landscape 
of cancer biology were underscored [9].

Given the phenomenon, our study focused on estab-
lishing a peroxisome-related gene prognostic risk 
model, which was validated through internal and exter-
nal cohorts. The independent prognostic ability was 
evaluated by univariate and multivariate Cox regres-
sion analyses. Additionally, we delved into the func-
tional, pathway and immune landscape differences 
between high-risk and low-risk groups using various 

analyses, providing a comprehensive understanding of 
the molecular landscape associated with peroxisome-
related genes in KIRC. Finally the potential prognostic 
biomarkers were identified from the model genes and 
validated using immunohistochemistry (IHC), and the 
workflow diagram was shown in Fig. 1.

Materials and methods
Dataset collection
The RNA sequencing and corresponding clinical data 
for 536 KIRC and 72 normal samples were down-
loaded from UCSC Xena (http://​xena.​ucsc.​edu/). We 
also downloaded the GSE22541 cohort, including 24 
samples, for external validation from the GEO (https://​
www.​ncbi.​nlm.​nih.​gov/) database.

Criteria for data: (1) only patients with primary KIRC 
were included; (2) only samples with complete RNA 
sequencing data were included. Exclusion Criteria for 
data: (1) patients with recurrent KIRC; (2) samples with 
survival time of 0. The TCGA-KIRC cohort included 
522 KIRC samples and 24 normal samples were selected 
in the GSE22541 cohort.

The 522 KIRC samples in the TCGA-KIRC cohort 
were randomly divided into the training cohort (70%, 
n = 365) and testing cohort (30%, n = 157) using 10-fold 
cross-validation. Table S1 presented KIRC patients’ 
clinical data of above cohorts. The PRGs were extracted 
from previous literature [10], Kyoto Encyclopedia of 
Genes and Genomes (KEGG, https://​www.​genome.​
jp/​kegg/) and Gene Set Enrichment Analysis (GSEA, 
https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp) data-
bases, of which 113 genes were shown in Table S2.

Differential analysis
The differential analysis between 365  KIRC and 72 
normal samples in the training cohort was performed 
to screen differentially expressed peroxisome-related 
genes (DE-PRGs), utilizing the “limma” package [11], 
and the selection criteria were |log2Foldchange|>1 and 
p < 0.05.

Cluster analysis
To explore the relationship between DE-PRGs and KIRC 
subtypes, the “ConsensusClusterPlus” package [12] was 
employed to perform cluster analysis based on Sangerbox 
(http://​sange​rbox.​com/). Agglomerative PAM clustering 
with 1-Pearson correlation distances was applied, and 
80% of the samples were resampled for ten repetitions. 
The optimal number of clusters was determined using 
the empirical cumulative distribution function plot.

http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://www.gsea-msigdb.org/gsea/index.jsp
http://sangerbox.com/
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Establishment of a peroxide‑related gene risk model 
in the training cohort
The important prognostic significance of DE-PRGs was 
evaluated by using univariate Cox regression analysis in 
the training cohort, and subsequently combined with 
important clinical factors, including age, grade and stage, 
the multivariate Cox regression analysis was performed 
to further assess the prognostic value. Ultimately, the 
candidate DE-FRGs were narrowed down using LASSO 
Cox regression analysis to establish a peroxide-related 
gene risk model. The risk formula was presented, and 
the risk score =  n

i=1
coef ∗ geneexpression . Accord-

ing to the optimal cutoff value, the KIRC patients in the 
training cohort were divided into high-risk and low-risk 
groups, and the difference of survival status between two 
subgroups was analyzed and compared through Kaplan‒
Meier method and log-rank test. The sensitivity and 
specificity of the gene risk model were evaluated using 
time-dependent receiver operating characteristic (ROC) 
curves, and the principal component analysis (PCA) 
was performed to detect differences of risk model genes 
expression patterns of two subgroups.

Validation and evaluation of a peroxide‑related gene risk 
model in the testing, entire and GSE22541 cohorts
In order to validate the general applicability of the prog-
nostic efficacy of the gene risk model, the KIRC patients 

were classified into two categories in the testing, entire 
and GSE22541 cohorts. Furthermore, PCA, Kaplan-
Meier and ROC curves were performed to validate the 
accuracy of the gene risk model.

Independent prognostic analysis
To evaluate the clinical applicability of the risk model, 
we conducted univariate and multivariate Cox regression 
analyses which aimed to ascertain whether the risk score 
derived from the risk model in the training cohort could 
be considered as an independent prognostic factor.

Establishment and validation of the nomogram
Utilizing the ’’rms’’ package, we integrated survival time, 
survival status, and significant  clinical factors identified 
through Cox analyses, along with the risk score derived 
from the risk model, to construct a comprehensive nom-
ogram. This nomogram was designed to predict the over-
all survival (OS) of KIRC patients at 1, 2, and 3 years. 
To assess the predictive accuracy of the nomogram, we 
employed calibration curves and the C-index as evalua-
tion metrics.

Functional enrichment analysis
To further analyze the difference of biological functions 
and pathways of two subgroups, which were stratified 
in the entire cohort utilizing the optimal cutoff value 

Fig. 1  Workflow diagram
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derived from the risk score, we conducted Gene Ontol-
ogy (GO) enrichment analysis and KEGG pathway anal-
ysis based on the DEGs, employing stringent criteria 
(|log2fold change|>1, p < 0.05), identified between the 
high-risk and low-risk groups.

Tumor immune infiltration
To investigate the immune status between different 
risk groups, we first used CIBERSORT (https://​ciber​
sort.​stanf​ord.​edu/) database to calculate the samples of 
22 kinds of immune cell infiltration scores. The ESTI-
MATE algorithm(https://​bioin​forma​tics.​mdand​erson.​
org/​estim​ate/) was used to predict the immune score 
and stromal score for each sample. The abundance of 6 
tumor immune cell infiltrations in KIRC was analyzed by 
TIMER (https://​cistr​ome.​shiny​apps.​io/​timer/) database 
Spearman correlation analysis  was used to evaluate the 
correlation between immune cells and risk scores, and to 
explore the correlation between the expression of 9 genes 
and the abundance of immune infiltrations by using its 
“Gene” module. The “SCNA” module was used to explore 
the correlation between somatic copy number alterations 
for 9 genes and the abundance of immune infiltration in 
the TIMER database.

Identification of potential prognostic biomarkers
The OS and recurrence-free survival (RFS) Kaplan-Meier 
curves of 9 risk model genes were generated, which 
proved instrumental in evaluating the potential prognos-
tic value of these risk model genes in predicting progno-
sis for KIRC patients, using the GEPIA2.0 (http://​gepia2.​
cancer-​pku.​cn/#​index) database. To gain a more compre-
hensive understanding of the expression of these genes 
in KIRC, we conducted assessments at both mRNA and 
protein levels using UALCAN (https://​ualcan.​path.​uab.​
edu/​index.​html) and HPA (https://​www.​prote​inatl​as.​
org/) databases.

Immunohistochemistry
Paraffin tissue samples of 2 KIRC and 2 normal achi-
val specimens  from the Pathology Department of Huaihe 
Hospital of Henan University in 2023 were collected. To 
guarantee that the thickness of each section was the same, 
and that other contributing elements were consistent, 
section work was carried out by the same pathological 
experimenter. Tissues were fixed in 4% paraformaldehyde 
at room temperature overnight. After gradient alcohol 
dehydration, parafffn embedded tissues were sliced into 
sections (5 μm thick), and were subjected to dewaxing 
(60˚C for 2 h), followed by soaking in dimethylbenzene 
twice for 15 min, hydration, antigen retrieval and wash-
ing with PBS. 3% H2O2 was used to block the endogenous 
peroxidase for 10 min at room temperature, and the slides 

were incubated with anti ACAT1 (1:50; cat. no. 16215-1-
AP; Proteintech) antibody dissolved in blocking solution 
(QuickBlock™; Beyotime Institute of Biotechnology) at 
4˚C overnight. After incubation, the slides were washed 
with PBS and incubated with HRP labelled polymer sys-
tem (cat. no. E-IR-R215; Elabscience Biotechnology Co, 
Ltd) at 37˚C for 15 min, followed by an incubation with 
3,3’- diaminobenzidine(DAB) detection reagent at room 
temperature for 5 min, and finally observed under light 
microscope with a magnification of x200. The semi quan-
titative expression of each protein was analyzed by Image 
Pro Plus software v.6.0 (Media Cybernetics, Inc.).

Statistical analysis
All statistical analyses were conducted by R version 4.1.1, 
other unused ones had been specifically noted.

Results
Difference analysis between 365 KIRC and 72 normal 
samples
Through differential analysis, we identified 30 DE-PRGs 
(Fig.  2A), of them the expression of 5 genes (ABCD1, 
FAR2, ACAD11, LDHA, BAAT) was upregulated, while 
the expression of 25 other genes (ABCD3, ACSL1, 
ACSL4, ACSL6, ACAT1, ACCAA1, ACOT1, ACOT2, 
ACOX2, ADH1A, AGXT, CAT, DAO, EPHX2, FNDC5, 
HACL1, HAO1, HAO2, CROT, IDH2, HMGCLL1, IDI1, 
PHYH, PIPOX, IDI1) was downregulated. The expression 
levels of these genes were shown in Fig. 2B. We also ana-
lyzed the correlation between 30 genes and found that 
most genes showed a positive correlation, with ACOT2 
and ACOT1 being the most relevant (Fig. 2C).

Classification of KIRCs based on 30 DE‑PRGs
To explore the relationship between 30 DE-PRGs expres-
sion and KIRC subtypes, the patients in the training 
cohort were grouped through cluster analysis. The area 
under the CDF curve gradually increased when the K 
value increased. On the premise of keeping the area 
under the curve as large as possible, according to the 
CDF Delta downward trend assessment, the delta decline 
was kept at the slowest pace, and the number of clusters 
was selected based on the combination of the above two 
factors. The optimal number of clusters was K = 3, and 
the number of suboptimal clusters was K = 2 (Fig.  3A-
C). Through survival analysis, we found that the OS of 
the three groups was not significantly different (Fig. 3D, 
p > 0.05). The clinical factors of the tumor, including stage 
(Stage I-IV), age (< 60 or ≥ 60 years old), and fustat (alive 
or dead), were shown by a heatmap, and there was no sta-
tistically significant difference (Fig. 3E).

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
https://cistrome.shinyapps.io/timer/
http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
https://ualcan.path.uab.edu/index.html
https://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Establishment and validation of the peroxisome‑related 
risk model in the TCGA and GSE22541 cohorts
Sixteen prognostic genes (ABCD1, ACAD11, ACAT1, 
CAT, EPHX2, HAO2, HMGCLL1, IDI1, ABCD3, ACSL1, 
PHYH, PEX7, DAO, HAO1, FNDC5, AGXT, p < 0.05) 
were screened through univariate Cox regression analysis 
(Fig. 4A). Subsequently, by combining 16 genes with sig-
nificantly prognostic clinical factors, including age, grade 
and stage, 14 significantly prognostic genes (ABCD1, 
ACAD11, ACAT1, CAT, EPHX2, HAO2, HMGCLL1, 
ABCD3, ACSL1, PHYH, DAO, HAO1, FNDC5, AGXT, 
p < 0.05) were identified by multivariate Cox regres-
sion analysis (Fig. S1). Finally, 9 genes were selected to 
establish a gene risk model via LASSO Cox regression, 
and the optimal λ value was 0.0173 (Fig.  4B-D). The 
risk score= (0.570 * ABCD1 exp.) + (− 0.046 * ACAD11 
exp.) + (− 0.135 * ACAT1 exp.) + (− 0.073 * AGXT 
exp.) + (− 0.021 *DAO exp.) + (− 0.108 * EPHX2 exp.) 
+ (0.118*FNDC5 exp.) + (0.083*HAO1exp.) + (-0.094 
*HMGCLL1 exp.). According to the optimal cutoff value 
(cut off = 1.848551) of the risk score, the training cohort 
was divided into high-risk and low-risk groups, and PCA 

indicated that patients could be well divided into two 
subgroups (Fig.  4E). There was  a statistically significant 
difference in overall survival time and rate between two 
subgroups, the high-risk group had more deaths and 
shorter survival time than the low-risk group (p < 0.01, 
Fig. 4F and H). The area under the ROC curves (AUC) of 
1-, 2- and 3- year were 0.725, 0.713 and 0.750 in the train-
ing cohort, respectively (Fig. 4G).

Based on the optimal cutoff risk score, the KIRC 
patients were classified into two subgroups in the test-
ing (cutoff = 2.012904), entire (cutoff = 1.848551) and 
the GSE22541 cohorts (cutoff = 21.73013). PCA indi-
cated that patients were well divided into low-risk and 
high-risk groups (Fig.  5A-C) and the survival rate of 
the former was significantly higher than that of the lat-
ter (Fig. 5D-F). The AUCs of the 1-, 2- and 3-year ROC 
curves of the testing cohort were 0.735, 0.637 and 0.673, 
respectively (Fig. 5G). The AUCs of the 1-, 2- and 3-year 
ROC curves of the entire cohort were 0.729, 0.692 and 
0.729, respectively (Fig. 5H). The AUCs of the 1-, 2- and 
3-year ROC curves of the GSE22541 cohort were 0.913, 
0.730 and 0.722, respectively (Fig.  5I). The number of 

A B

C

Fig. 2  Identification of DE-PRGs between KIRC and normal tissues. A 30 DE-PRGs expression difference between KIRC and normal tissues (*p< 
0.05; **p< 0.01; ***p< 0.001). B The heatmap of 30DE-FRGs expression level in KIRC and normal tissues (blue: low expression; red: high expression). 
C Interaction analysis among the 30 DE-PRGs (green: negative correlation; red: positive correlation)
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C D
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Fig. 3  Clinical factors and survival status of KIRC among cluster1, cluster2 and cluster3 subtypes in the training cohort. A Relative change 
in the area under the CDF curve for k = 2–10. B Consensus clustering cumulative distribution function (CDF) for k = 2 to 10. C The training 
cohort was grouped into three clusters according to the consensus clustering matrix k = 3. D Survival curves for the three clusters. (E)Heatmap 
and distribution of the clinicopathologic characters of the three clusters classified by these peroxisome-related genes
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deaths in the high-risk group was larger than that in the 
low-risk group, with shorter survival time. There were 
significant differences in survival time between the high-
risk and low-risk groups (Fig. 5J-L).

Independent prognostic value of the risk model
The univariate Cox regression analysis showed the risk 
score (95%CI: 2.360–4.060; p < 0.001), age (95%CI: 1.230–
2.640; p = 0.002), stage (95%CI: 2.390–5.060; p < 0.001) 
and grade (95%CI: 1.760–4.040; p < 0.001) were sig-
nificantly associated with the OS of KIRC patients, yet 
gender was not a significant prognostic factor (Fig. 6A). 
Then multivariate Cox regression analysis showed the 
risk score (95%CI: 1.820–3.330; p < 0.001), age (95%CI: 
1.130–2.460; p = 0.010) and stage (95%CI: 1.500–3.340; 
p < 0.001) were important and  significant prognostic 
factors (Fig.  6B). The above results indicated that  the 
risk score, age and stage had the ability to be independ-
ent risk factors. We plotted a heatmap of the clinical 

characteristics of the training cohort and found differ-
ences in patient age and stage between the low-risk and 
high-risk groups (Fig. 6C).

Establishment and validation of the nomogram
The significantly prognostic clinical factors, including 
age and stage, and risk score were integrated to estab-
lish a nomogram, which was used to predict the overall 
survival rate of 1-year, 2-year and 3-year KIRC patients, 
using the R package “rms” (Fig. 7A). The C-index of the 
nomogram was 0.77(0.77 > 0.7). The results of the cali-
bration curve at 1 year were consistent with the actual 
results, but the calibration curves at 2 years and 3 years 
deviated from the actual results (Fig. 7B-D).

GO enrichment and KEGG pathway analyses
To further explore the differences in gene function and 
pathways, we used the “limma” package, with p < 0.05 and 
|log2 FC| > 1 as criteria for screening DEGs. We screened 

Fig. 4  Establishment of a peroxisome-related gene risk model in the training cohort. A Univariate Cox regression analysis of OS for 30 DE-PRGs. 
B LASSO Cox regression analysis of the 14 DE-PRGs. C Cross-validation for tuning the parameter selection in the LASSO Cox regression analysis. 
D The boxplot showed the distribution of risk scores for survival and death patients. E PCA plot for KIRCs based on the risk score of the training 
cohort. F Survival curves for patients in the high-risk and low-risk groups of the training cohort. G ROC demonstrated the predictive efficiency 
of the risk score of the training cohort. H Distribution of patients based on the risk score of the training cohort. (up). The survival status for each 
patient of the training cohort. (low-risk population: on the left side of the dotted line; high-risk population: on the right side of the dotted line) 
(mid). Heat map of patient gene signature based on risk score of the training cohort. (down)
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DEGs in the high-risk group and low-risk group. GO and 
KEGG analyses results indicated that DEGs were mainly 
related to substance metabolism, transport and the PPAR 
signaling pathway (Fig. 8A-B).

Tumor immune infiltration between two subgroups
We used CIBERSORT database to compare the infiltra-
tion fractions of 22 immune cells in the training cohort. 
The infiltration levels of CD8+ T cells, follicular helper 

T cells, regulatory T cells, macrophages, stationary den-
dritic cells and eosinophils were significantly higher 
in the high-risk group (p < 0.05). The infiltration levels 
of memory B cells, CD4+ T cells, monocytes, M1 mac-
rophages and stationary mast cells were significantly 
higher in the low-risk group (p < 0.05). The results indi-
cated that specific and nonspecific immunity were sup-
pressed in the high-risk group (Fig.  9A). To further 
evaluate the relationship between the immune status of 

Fig. 5  Internal and external validation of the peroxisome-related gene risk model. A-C PCA plots for KIRCs based on the risk score of the testing, 
entire and GSE22541 cohorts. D-F Kaplan–Meier curves for the OS of patients in the high-risk and low-risk groups of testing, entire and GSE22541 
cohorts. G-I ROC indicated the predictive efficiency of the risk score of the testing, entire and GSE2254 cohorts. J-L Distribution of patients based 
on the risk score of the testing, entire and GSE2254 cohorts (up). The OS for each patient of the testing, entire and GSE22541cohorts. (low-risk 
population: on the left side of the dotted line; high-risk population: on the right side of the dotted line) (mid). Heat map of risk model based on risk 
score of the training cohort. (down)
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each group, we successfully generated the stromal score, 
immune score, and ESTIMATE score by using the ESTI-
MATE algorithm. The special situation is that higher 
stroma score (p < 0.001), immune score (p < 0.001), and 

ESTIMATE score (p < 0.001) and higher tumor purity 
were observed in the high-risk group compared with 
the low-risk group (Fig.  9B-D). We also analyzed the 
relationship between the infiltration levels of 6 immune 

A

C

B

Fig. 6  Independent prognostic analysis. A Univariate Cox regression analysis in the training cohort. B Multivariate Cox regression analysis 
in the training cohort. C Heatmap of the expression of 9 model genes and the distribution of clinical factors between high-risk and low-risk groups
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A

B C

D

Fig. 7  Establishment and Validation of the nomogram. A Nomogram to predict the OS of KIRC patients in 1-, 2- and 3- year. B-D The calibration 
plots for the training cohort of the nomogram for KIRC patients in 1-, 2- and 3- year. The Y-axis represents actual survival, and the X-axis represents 
nomogram-predicted survival
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cell types and the risk score by using TIMER database. 
Except for CD8+ T cells and macrophages, there was a 
significant positive correlation between the risk score 
and the abundance of other immune cells (Fig.  10A-F). 
We further analyzed the correlation between the expres-
sion of 9 genes and the level of immune infiltration by 
using TIMER database, and the results indicated that the 
expression of these genes was positively correlated with 
the level of immune cell infiltration (Fig. 11A-I). What’s 
more, we studied the potential correlation between infil-
tration of 6 immune cell types and the somatic copy 
number alterations of 9 model genes using the “SCNA” 
module of TIMER database. Except for DAO and HAO1, 
the mutants of 7 other genes were strongly related to the 
immune infiltration microenvironment of KIRC. Specifi-
cally, arm-level deletion and arm-level gain had a statis-
tically significant impact on the immune cell infiltration 
levels of KIRC (Fig. 12A-I).

Identification of potential prognostic biomarkers
Using GEPIA2.0 website and based on TCGA data-
base, we conducted survival analysis on 9 model genes. 
Employing the median expression as the cutoff value, 
we categorized KIRC patients into high and low expres-
sion groups. Through meticulous screening, a com-
pelling observation surfaced: in KIRC patients, those 
with high expression levels of ACAT1, EPHX2, and 
HMGCL11 exhibited superior OS and RFS compared 

to their low-expression group (Fig. S2A-F). Upon this 
discovery, we proceeded to construct a nomogram rep-
resenting the expression patterns of these three genes. 
Notably, the segment corresponding to ACAT1 stood out 
with the longest length, indicating its superior prognostic 
capabilities in predicting the outcomes of KIRC patients 
compared to EPHX2 and HMGCL11 (Fig. S2G). This 
underscores the potential clinical significance of ACAT1 
as a potential prognostic marker in the context of KIRC. 
Subsequent analysis of ACTA1 protein expression using 
the UALCAN database revealed that ACAT1 protein lev-
els were lower in KIRC than in normal tissues (Fig. S2H). 
Further validation through the HPA database, focusing 
on both normal and KIRC tissue microarrays, affirmed 
this trend, illustrating an overall lower expression level of 
ACAT1 protein in KIRC tumor tissues compared to their 
normal tissues (Fig. S2I).

Immunohistochemistry
The potential clinical significance of the ACAT1 protein 
was preliminarily assessed by IHC in KIRC patients from 
Huaihe Hospital of Henan University. The IHC analy-
sis showed that ACAT1 expression was predominantly 
located in the cell membrane and cytoplasm of renal 
tubular epithelial cells, and notably we found that ACAT1 
protein expression was significantly down-expressed in 
KIRC tissues compared with normal tissues (p < 0.01, 
Fig. 13A-B).

Fig. 8  GO enrichment and KEGG pathway analyses. A Bubble graph for GO enrichment analysis (the bigger bubble means the more genes 
enriched, and the increasing depth of red means the differences were more obvious;). B Barplot graph for KEGG pathway analysis (the longer 
bar means the more genes enriched, and the increasing depth of red means the differences were more obvious)
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Discussion
KIRC is a malignant tumor originating from the epithelial 
cells of renal tubules, and its progression is closely linked 
to a profound restructuring of cellular metabolism, and 
the metabolic features of KIRC are primarily manifested 

through the reprogramming of energy metabolism [13–
15]. In order to meet the demands of their rapid growth 
and proliferation, cells undergo a series of intricate met-
abolic regulations. Specifically, glycolysis, as a crucial 
pathway for ATP generation in cells, is widely activated 

A

B C

D

Fig. 9  The immune analysis between the high-risk and low-risk groups. A Comparison of the scores of 22 types of immune cells 
between high-risk and low-risk groups in the training cohort. B–D Expression level of (B) Stromal score, (C) ESTIMATE score and (D) immune score 
between the high-risk and low-risk groups
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in KIRC, which provides the required energy for cells by 
breaking down glucose into pyruvate and lactate. How-
ever, compared to normal cells, KIRC cells exhibit a 
significantly higher degree of dependence on this path-
way, resulting in a noticeable increase in glycolytic flux 
[16–18]. Simultaneously, mitochondria, as the primary 
organelles for intracellular energy production, also play a 
critical role in the metabolic processes of renal cell carci-
noma. Research indicates that mitochondrial bioenerget-
ics in renal cell carcinoma undergo significant alterations, 
leading to impaired oxidative phosphorylation (OxPhox) 
function. This phenomenon may be a result of cells 
adjusting mitochondrial function to meet the demands of 
rapid proliferation, prioritizing ATP production through 
glycolysis rather than relying on oxidative phospho-
rylation [19].  In the metabolic reprogramming of KIRC, 
lipid metabolism also plays a crucial role. The demand 

for lipids becomes increasingly significant in cancer cell 
growth and division, and KIRC cells exhibit abnormal 
reliance on lipids. Significant changes occur in the syn-
thesis and breakdown of lipids during this process, influ-
encing the structure and function of cell membranes [17, 
20]. Peroxisomes, as organelles involved in lipid metabo-
lism and cellular redox balance, play a crucial role in the 
metabolic regulation of KIRC.

The immune infiltrative nature of KIRC has drawn 
widespread attention, highlighting the significant role 
of the immune system in tumor development. KIRC 
stands out due to its immune infiltrative characteristics, 
typically involving various immune cells such as T lym-
phocytes, natural killer cells, and macrophages, all play-
ing anti-tumor roles in the tumor microenvironment. 
Understanding the molecular mechanisms of immune 
infiltration in KIRC is crucial for formulating effective 

Fig. 10  The associations between the risk score and infiltration levels of 6 immune cell types. A B cells (B) CD4 + T cells (C) CD8 + T cells (D) DC (E)
Macrophages and (F) Neutrophils.
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Fig. 11  The correlation of 9 model genes expression with immune infiltration levels in KIRC. A ABCD1. B ACAD11. C ACAT1. D AGXT. E DAO. F 
EPHX2. G FNDC5. H HAO1. I HMGCLL1.
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immunotherapeutic strategies [21, 22]. On the metabolic 
front, the activation of specific metabolic pathways plays 
a pivotal role in the immune infiltration of KIRC. Some 
studies suggest a close relationship between the activa-
tion of the glycolytic pathway and the infiltration and 
functionality of immune cells. Tumor cells influence the 
metabolic environment of immune cells by regulating 
the generation of glycolytic products, thereby modulat-
ing the activity and function of immune cells. Addition-
ally, certain metabolic byproducts may directly impact 
the acid-base balance and oxygen concentration in the 
tumor microenvironment, thereby influencing immune 
cell infiltration. Vascularization also plays a crucial role 

in the development of KIRC. The generation of intratu-
moral blood vessels is closely related to tumor growth 
and metastasis, with the activation of specific metabolic 
pathways regulating angiogenesis and inflammatory fea-
tures [23, 24]. Furthermore, the characteristics of the 
tumor microenvironment significantly impact the disease 
biology of KIRC. The tumor microenvironment com-
prises various components such as cytokines, growth 
factors, extracellular matrix, etc., and their interactions 
with immune cells have a crucial impact on the effective-
ness of immunotherapy [24–27]. In-depth exploration of 
the composition and regulatory mechanisms of the KIRC 
microenvironment is instrumental in gaining a better 

A B

C D

E F

G

I

H

Fig. 12  The correlation between somatic copy number alterations of nine genes and the abundance of immune infiltration. A ABCD1. B ACAD11. 
C ACAT1. D AGXT. E DAO. F EPHX2. G FNDC5. H HAO1. I HMGCLL1
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understanding of the molecular basis of tumor develop-
ment, thereby providing more precise targets for individ-
ualized treatment. Peroxisomes, as metabolic organelles 
within cells, also play a crucial role in the immune regula-
tion of KIRC. By modulating lipid metabolism and redox 
balance, peroxisomes influence the activity and infiltra-
tion of immune cells in renal cell carcinoma. Further 
investigation into the functions of peroxisomes in KIRC 
holds the potential to offer new insights for the develop-
ment of novel immune therapy strategies.

In this study, the Cox regression analyses were applied 
to identify 14 significantly prognostic DE-PRGs, subse-
quently, utilizing the advanced LASSO Cox regression 
analysis, we refined these genes, ultimately narrowing 
it down to a subset of 9 critical genes. The predictive 
capacity of gene risk model was evaluated in thorough 
validation cohorts, including training, testing, entire and 
GSE22541 cohorts, and the results showed both its bet-
ter accuracy and sensitivity. Notably, independent prog-
nosis analyses unequivocally demonstrated that the risk 
scores derived from gene risk model possess the poten-
tial to act as independent prognostic factors for patients 
with KIRC. We also employed a holistic approach by 
integrating survival time, survival status, age, stage, and 
risk score to construct a nomogram. The C-index was 
0.77 which showed good predictive performance. While 
the 1-year calibration curve aligned closely with actual 
results, observed discrepancies in the 2-year and 3-year 
calibration curves prompted a critical examination. These 
deviations are tentatively attributed to the inherent limi-
tations posed by a relatively small sample size, necessitat-
ing a cautious interpretation of these specific time points. 

Furthermore, our investigation delved into the realm of 
immune responses, revealing intriguing insights. Mul-
tiple immune analyses unearthed higher tumor purity 
within the high-risk group, concurrently accompanied by 
suppressed immune reactions. This nuanced observation 
offers a plausible explanation for the observed poorer 
prognosis within the high-risk group, as elucidated in the 
survival curve. The intricate interplay between genetic 
factors, immune responses, and clinical parameters 
emerges as a focal point, underscoring the complexity 
of prognostic modeling in KIRC. Through the analyses 
of 9 model genes, including univariate and multivariate 
Cox regression, survival and nomogram analysis, our 
attention was eventually honed in on ACAT1. These 
integrated findings not only highlight the prognostic sig-
nificance of ACAT1 but also underscore the consistency 
of its downregulation at both the mRNA and protein 
levels in KIRC. The multiple analyses, incorporating sur-
vival analysis and protein expression validation, enhance 
the robustness of our observations, providing a compre-
hensive understanding of ACAT1’s potential role in the 
clinical landscape of KIRC. Further exploration into the 
molecular mechanisms governing ACAT1 expression 
may unveil novel therapeutic avenues for managing KIRC 
patients. This study was based on data mining from the 
TCGA and GEO databases. The initial validation was 
conducted using clinical specimens for immunohisto-
chemistry. However, extensive follow-up experiments are 
essential, including PCR, Western Blot, CCK-8 and Tran-
swell, etc., to validate the role of ACAT1 in the mecha-
nism of action in KIRC. These experiments are crucial for 
providing new therapeutic strategies towards personal-
ized treatment approaches.

A B

Fig. 13  Protein expression level of ACAT1 KIRC and normal tissues were examined via immunohistochemical staining
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ABCD1 holds significance in X-linked adrenal leu-
kodystrophy (X-ALD) as it plays a pivotal role in facili-
tating the entry of very-long-chain fatty acids (VLCFAs) 
into the peroxisome for subsequent β-oxidation [28]. 
Situated within the peroxisomal membrane, ABCD1 
orchestrates the breakdown of VLCFAs via β-oxidation 
by transporting cytoplasmic VLCFAs or VLCFA-CoA 
into the peroxisome [29]. Another vital gene, ACAD11, 
encodes a protein deeply involved in fatty acid oxidation, 
a process critical for efficient oxidative phosphorylation 
(OXPHOS) and cellular survival, especially under glucose 
deprivation conditions [30]. Considering the frequently 
observed metabolic shift in cancer development char-
acterized by escalated aerobic glycolysis and diminished 
OXPHOS [30]. ACAD11 assumes importance. Nota-
bly, it emerges as a pivotal metabolic target of the tumor 
suppressor protein p53, known for its role in inhibiting 
tumor progression by curtailing glycolytic activity and 
fostering OXPHOS through diverse mechanisms [31]. 
Therefore, ACAD11 potentially plays a crucial role in 
the context of tumor advancement. ACAT contains two 
forms: one is a cytoplasmic enzyme (ACAT2), and the 
other is a mitochondrial enzyme (ACAT1), which could 
catalyze the reversible formation of acetyl-CoA from 
two molecules in the process of ketogenesis and ketoly-
sis, respectively. Recent studies have revealed a potential 
carcinogenic impact associated with ACAT1, in  which 
overexpression of ACAT1 contributes to promoting 
tumor growth and metastasis, lending support to the 
hypothesis implicating key enzymes involved in ketone 
body metabolism in the process of tumorigenesis and 
metastatic progression [32, 33]. AGXT, also recognized 
as AGT, encodes a liver peroxisomal enzyme responsible 
for catalyzing the conversion of glyoxylic acid to glycine. 
The inactivation of AGXT protein results in the conver-
sion of glyoxylic acid to oxalate, leading to the formation 
of insoluble calcium salt deposits primarily in the kid-
ney and other organs [34]. Primary hyperoxaluria type 1 
(PH1) is an uncommon metabolic disorder characterized 
by defects in liver-specific peroxisome enzymes, spe-
cifically alanine-acetaldehyde acid and serine-pyruvate 
aminotransferase [35]. The DAO gene, responsible for 
encoding diamine oxidase, has been linked to allergic 
reactions, and intriguingly, mutations in this gene might 
contribute to the incidence of gastric cancer [36]. EPHX2, 
encoding soluble epoxide hydrolase (seH), plays a cru-
cial role in the degradation of endogenous lipid epoxides 
[37]. Dysregulation of EPHX2 has been implicated in 
various diseases, including renal and liver malignancies 
[38], hypertension [39], and hypercholesterolemia [40]. 
FNDC5, a transmembrane glycoprotein released dur-
ing muscle cell activity, produces irisin upon hydrolysis. 
Irisin, in turn, responds to the activation of peroxisome 

proliferator-activated receptor γ coactivator 1α (PGC-1α) 
[41, 42]. This multifunctional hormone has implica-
tions in metabolism, diabetes, cardiovascular diseases 
[43], and has also been associated with the occurrence 
and development of cancer [44]. HAO1, predominantly 
expressed in the liver and pancreas, exhibits activ-
ity against the dicarbon substrate glycolate [45]. Recent 
studies highlight its role in regulating tricarboxylic acid 
(TCA) circulation [46]. Targeted therapy of the HAO1 
gene holds promise for addressing hyperoxaluria. HMG-
CLL1, a highly homologous gene to HMGCL reported in 
the Genome Database in 2004, encodes the lytic isoform 
HL (ER-CHL), capable of generating acetoacetic acid and 
acetyl-CoA. Notably, studies indicate a decline in HMG-
CLL1 expression levels in KIRC [47]. Understanding the 
intricate relationships between these genes and their 
associated pathways is crucial for unraveling the com-
plexities of metabolic disorders and developing effective 
therapeutic strategies. This emerging body of evidence 
emphasizes the multifaceted involvement of peroxisomes 
in cancer, specifically KIRC. Understanding the nuanced 
interplay between peroxisomes and tumorigenesis offers 
potential avenues for targeted interventions and thera-
peutic strategies. The intricate relationship between 
peroxisomal function and the molecular intricacies of 
KIRC underscores the need for further exploration in this 
intriguing field of research.

In conclusion, our research not only sheds light on the 
potential prognostic significance of peroxisome-related 
genes in KIRC but also contributes valuable insights into 
the molecular and immune landscape of this challenging 
malignancy. The establishment of a nine-gene prognos-
tic risk model, combined with functional and immune 
analyses, forms the basis for a comprehensive approach 
towards personalized treatment strategies for KIRC. This 
study aims to bridge existing gaps in prognostic evalua-
tion and therapeutic decision-making, ultimately improv-
ing outcomes for patients with KIRC.
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