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reverses organ remodelling by normalizing
the expression of key transcription factors
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Abstract

Background Benign prostatic hyperplasia in elderly males often causes bladder outlet obstruction termed benign
prostatic obstruction (BPO). BPO induces lower urinary tract symptoms and quantifiable urodynamic alterations

in bladder function. When conservative medical treatments are exhausted, surgical interventions like transurethral
resection of the prostate (TURP) are employed for bladder outlet de-obstruction. Elucidating the molecular changes
in the human bladder resulting from BPO and their reversal post-de-obstruction is pivotal for defining the “point

of no return’, when the organ deterioration becomes irreversible. In this study we carried out a comprehensive molec-
ular and urodynamic characterization of the bladders in men with BPO before TURP and 3 months after the relief

of obstruction.

Methods We report integrated transcriptome and proteome analysis of bladder samples from male patients

with BPO before and 3 months after de-obstruction surgery (TURP). mRNA and protein profiles were correlated

with urodynamic findings, specifically voiding detrusor pressure (PdetQmax) before TURP. We delineated the molecu-
lar classifiers of each group, pointing at the different pre-TURP bladder status.

Results Age-matched patients with BPO without DO were divided into two groups based on the PdetOmax values
recorded by UDI before de-obstruction: high and medium pressure (HP and MP) groups. Three months after de-
obstruction surgery, the voiding parameters PdetQmax, Qmax and RV were significantly improved in both groups,
without notable inter-group differences in the values after TURP. Patients with high PdetQmax showed less advanced
remodeling and inflammatory changes than those with lower values. We detected significant dysregulation of gene
expression, which was at least partially reversed by de-obstruction in both patients'groups. Transcription factor SOX21
and its target thrombospondin 4 (THBS4) demonstrated normalization post-TURP.

Conclusions Our findings reveal substantial yet incomplete reversal of cell signalling pathways three months
after TURP, consistent with improved urodynamic parameters. We propose a set of biomarker genes, indicative

of BPO, and possibly contributing to the bladder changes. This study unveils the stages of progressive obstruction-
induced bladder decompensation and offers insights into selecting an optimal intervention point to mitigate loss
of contractility.
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Background

Benign prostatic hyperplasia can, independent of pros-
tate size, cause bladder outlet obstruction (BOO) in
elderly males termed benign prostatic obstruction
(BPO). BPO is a dynamic chronic process accompanied
by lower urinary tract symptoms (LUTS), including stor-
age symptoms such as frequency, urgency and nocturia
and voiding symptoms such as weak stream, delayed or
intermittent voiding and incomplete emptying. Moderate
to severe LUTS are found in approximately 25% of men
aged 40 to 49 and in 50% aged 70 to 79 [1]. After exhaust-
ing less invasive medical treatment options, patients are
offered surgical treatment, for example transurethral
resection of the prostate (TURP) to de-obstruct the blad-
der outlet. Although voiding parameters significantly
improve, 20 to 40% of patients continue to experience
at least some bothersome LUTS [2, 3], inciting further
research into the factors contributing to BPO-induced
bladder dysfunction. Specifically, identifying the men at
risk of irreparable bladder damage due to BPO and opti-
mal timing of de-obstruction surgery are paramount to
avoid loss of bladder function. Limited evidence from
human studies and animal models, summarized in a
recent report [4], supports the notion that BPO gradually
progresses from inflammation to hypertrophy to fibro-
sis [5]. BPO-induced bladder remodeling includes initial
bladder hypertrophy during the compensated stage char-
acterized by the increased detrusor contractility / pres-
sure during voiding, and can be accompanied by detrusor
overactivity (DO). This ultimately can lead to loss of blad-
der function (detrusor underactivity) [4].

In humans, the advancement of BPO-induced bladder
remodelling is impossible to monitor, because several
years can pass between the onset of symptoms and pres-
entation in clinic. Nevertheless, it is possible to establish
a correlation between the urodynamic phenotypes of
BPO-induced lower urinary tract dysfunction (LUTD)
and the molecular alterations in the bladder, as we have
recently shown in a comprehensive study of human blad-
der biopsies, obtained before TURP [6]. The overall num-
ber of gene expression changes increased progressively:
It was the lowest in BPO with detrusor overactivity and
the highest in underactive decompensated bladders [6]
compared to controls without LUTD. Animal models
of LUTD cannot replicate the chronic gradual longitu-
dinal changes seen in human disease. To mimic human
bladder outlet obstruction in rodents, the urethra is
loosely ligated creating a partial bladder outlet obstruc-
tion (pBOO). In contrast to humans this causes acute
obstruction resulting in a significant initial inflamma-
tory impact immediately after surgery. There are other
species-specific differences in immune processes, for
example, the TNF-alpha-induced changes in human BPO
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are not observed in mouse pBOO, indicating a different
pathophysiological mechanism of organ remodelling [7].
Similarly, the acute partial obstruction induced in ani-
mals results in bladder stretch which is rarely encoun-
tered in humans and may affect the results generated by
this model.

Alternatively, it is possible to monitor both the func-
tional and molecular changes in the bladder after surgical
de-obstruction, and this was done in a number of animal
studies, mostly in larger rodents such as rats [8, 9], guinea
pigs [10] and rabbits [11]. It was noted that despite the
overall improvement of the micturition parameters, com-
plete restoration of bladder function did not occur [12],
and many molecular changes persisted after the relief of
obstruction in animals [13]. Similarly, in a large propor-
tion of human patients, followed after TURP, removal of
obstruction improved symptom scores and flow rate [14],
but did not completely reverse the LUTD evident by per-
sistent DO [15] and low or inadequate detrusor contrac-
tility [16].

Understanding the molecular alterations in the human
bladder caused by BPO and persisting after the relief of
obstruction is indispensable for defining the “point of no
return’, when the organ deterioration becomes irrevers-
ible. This should help identify new therapeutic options,
including correct timing of de-obstruction surgery. As a
follow-up of our earlier study, which revealed molecular
networks, hubs of signalling, and biomarkers in BPO-
induced bladder dysfunction in men with defined func-
tional phenotypes [6], we now report a comprehensive
molecular and urodynamic characterization of the blad-
ders in men with BPO before TURP and 3 months after
the relief of obstruction. We performed an integrated
transcriptome and proteome analysis of the bladder biop-
sies in the two patient groups with a significant difference
in the voiding detrusor pressure (PdetQmax), and deline-
ated the molecular classifiers of each group, pointing at
the different pre-TURP bladder status. The gene expres-
sion follow-up 3 months after surgery sheds light on the
processes, contributing to the recovery of bladder func-
tion and transcription factors, involved in the regulation
of bladder remodelling in BPO.

Methods

Patient selection, biopsy collection and RNA isolation
Voiding symptoms were assessed in all patients by IPSS
(International Prostate Symptom Score) and 48hours
urinary diary, urinary free flow and sonographic meas-
urements of residual urine volumes [17]. In controls
O’Leary-Sant symptom index, O’Leary-Sant problem
index and pelvic pain VAS scores were additionally
assessed.
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Group 1-normal bladder function, designated “control”
Controls were mostly recruited from patients under-
going cystoscopy during stone treatment and qualified
with the following results: IPSS score <8, O’Leary-Sant
symptom index <6, O’Leary-Sant problem index <6,
pelvic pain VAS score<4, voiding frequency<8/24h
assessed by bladder diary, a bell-shaped flow curve and
no post-void residual urine (n=6). Ethical approval
was given for cold cup biopsies from patients with no
history of LUTS undergoing an invasive procedure in
anesthesia for stone treatment.

Groups 2 and 3, bladder outlet obstruction high pressure (HP)
and medium pressure (MP) groups

In all patients with LUTS due to BOO urodynamic
studies were performed according to the International
Continence Society (ICS) standards. Bladder contrac-
tility and BOO were assessed simultaneously. Addi-
tional cystoscopy was performed to further assess the
obstructive component of the prostate and to exclude
bladder tumours. Groups were defined according to
ICS terminology after all urodynamic results were
reviewed by a second experienced functional urologist
as follows:

Group 2 - BOO without DO with high PdetQmax, designated
“Hp”

Patients with increased detrusor pressure and reduced
urine flow during pressure flow studies without involun-
tary detrusor contractions during the filling phase (phasic
and/or terminal) and defined as obstructed according to
the Abrams-Griffith nomogram and the BOOI. Patients
with maximal detrusor pressure at maximal flow during
voiding (PdetQmax)>90 cmH2O were included in this
group (n=3).

Group 3 - BOO without DO with medium PdetQmayx,
designated “MP”

Patients with increased detrusor pressure and reduced
urine flow during pressure flow without involuntary det-
rusor contractions during the filling phase (phasic and/
or terminal) and defined as obstructed according to the
Abrams-Griffith nomogram and the BOOL. Patients with
a detrusor pressure at maximal flow (PdetQmax) of <90
c¢cmH20 were included in this group (n=3).

In all groups four urothelium covered muscle con-
taining cold-cup biopsies were collected from the blad-
der dome by the same urologist. Biopsies were stored in
RNAlater at —70°C until RNA or protein isolation. Three
months after TURP, bladder function in the HP and MP
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groups was re-assessed by UDI, and a second set of blad-
der dome biopsies collected and stored in RNAlater.

mRNA sequencing and alignment

Total RNA was isolated using mirVana kit (Applied Bio-
systems) as described previously [18]. RNA was treated
with DNAse (DNA-free kit, Ambion), its quality con-
trolled by BioAnalyzer and further processed for library
preparation and NGS as described in our previous study
[6]. Briefly, sequencing was performed on the Illumina
HiSeq 2000 single end 100bp using the TruSeq SBS Kit
v3-HS (Illumina, Inc., California, USA). Read mapping
to human reference genome hg38 was done using STAR
(version 2.7.0e). Counting the number of reads/gene was
done using featureCounts [19] library in R (version 3.6.1).

Differential expression and transcription factor analysis
Differentially expressed genes were identified using the
Bioconductor packages DESeq2 (version 1.30.1) [20] and
edgeR (version 3.32.1) [21]. Genes with adjusted p-value
<0.1 were considered as significantly DEGs, The tftargets
(version 1.3) library in R was used to access TRED, ITFP,
TRRUST, and Marbach [22-25] databases containing
predicted and known human TF targets.

Protein sample preparation and liquid chromatography
tandem mass spectrometry

For the protein isolation from the RNAlater-preserved
samples, the biopsies were submerged in 200 ul M-PER
Mammalian protein extraction reagent (Thermo Scien-
tific) and disrupted on ice using TissueRuptor homog-
enizer (Qiagen). After removing the tissue debris by
centrifugation, and estimating the protein concentra-
tion by BCA assay, 30 ug of protein extracts were loaded
on 12% SDS-PAGE and separated for about 1cm. After
Coomassie staining and destaining, the lane was cut into
five horizontal slices. Proteins were in-gel digested as
described elsewhere [26]. The digests were analysed by
liquid chromatography LC/MS-MS (Easyl000 nanoLC
coupled to a QExactive classic mass spectrometer, Ther-
moFisher Scientific) with one injection of 5-pl digests.
Peptides were trapped on a C18 PepMap100 precolumn
(5pum, 1004, 300 pum X 5mm, ThermoFisher Scientific,
Reinach, Switzerland) and separated by backflush on a
C18 column (3 pm, 100 A°C, 75 pm X 15 cm, Nikkyo Tech-
nos, Tokyo, Japan) by applying a 40-min gradient of 5%
acetonitrile to 40% in water, 0.1% formic acid with a flow
rate of 300 nl/min. The Full Scan method was set with a
mass range of 360—1400m/z, a resolution at 70,000 with
an automatic gain control (AGC) target of 1x10° and a
maximum ion injection time of 50 ms. A data-dependent
method for the 10 most intense precursor ion fragmen-
tations was applied with the following settings: dynamic
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exclusion time of 20s, resolution of 17,500, AGC of
1% 10°, maximum ion time of 110 ms, isolation mass win-
dow of 2m/z, normalized collision energy of 27%, under
fill ratio 1%, charge exclusion of unassigned and 1+ ions,
and peptide match preferred, respectively.

LC-MS/MS data were processed with MaxQuant (ver-
sion 1.6.14.0) using default orbitrap settings for peak
detection, strict trypsin cleavage rule, allowing up to
three missed cleavages, variable oxidation on methio-
nine, acetylation of protein N-termini, and deamidation
of asparagine and glutamine, with fixed carbamidometh-
ylation of cysteines, respectively. Match between runs
was used with a retention time window of 0.7 min. The
fragment spectra were interpreted using the SwissProt
protein sequence database, release 2021_04. Protein
identifications were accepted only if at least two razor
peptides were identified at a 1% false discovery rate
(FDR) cut-off on peptide spectrum match, peptide and
protein level. Potential contaminants and protein groups
only identified by site were removed prior to further
analysis. Missing label-free (LFQ) values were imputed in
the following manner: if there were at most 1 non miss-
ing value in a group of replicates, then the missing val-
ues in this group of replicates were imputed by drawing
random values from a Gaussian distribution of width
0.3x sample standard deviation centred at the sample
distribution mean minus 2.5x sample standard devia-
tion; any remaining missing values were imputed by the
Maximum Likelihood Estimation (MLE) [27]. Differential
expression was performed by moderated t-test [28] for
protein groups counting at least 2 detections in at least
1 group of replicates. Adjusted p-values for multiple test-
ing were calculated by the Benjamini-Hochberg method
[29]. Significance curves were obtained as in [30], such
that |log2 fold|>=1 and adjusted p-value <=0.05 (0.05
reached at asymptotically high fold changes). The impu-
tation procedure was repeated 20x, and protein groups
found consistently differentially expressed with respect
to the significance curve through the imputation cycles
were especially flagged.

Sample clustering and pathway analysis

Functional enrichment analysis

Gene Ontology (GO) over-representation analysis (ORA)
[31] methods were used to gain biological insight on the
DEGs. We used clusterProfiler (version 3.18.1) pack-
age [32] in R to perform ORA on GO terms associated
with DEGs or DEPs. A threshold of p-value less than 0.1
was used to define statistical significance. Pathway analy-
sis for differentially expressed proteins (DEPs) was car-
ried out using “Ingenuity canonical pathway” tool in IPA
(IPA®, QIAGEN Redwood City). To determine whether
the activity of canonical pathways, including functional
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end-points, is increased or decreased based on differ-
entially expressed proteins in the datasets, the pathway
activity (z-score) was calculated by IPA.

Upstream regulator analysis

The upstream pathway analysis module of Ingenuity
Pathway Analysis (IPA) (Application Build 377,306 M
dated 2016-03-26, Content Version 27,216,297 build
ing_idris dated 2016-03-16) was used. Overlap p-values
were calculated by IPA using Fisher’s exact test, based on
the significance of the overlap between the known targets
and experimentally identified set of regulated genes. The
supplementary file named “session-info” contains a com-
prehensive list of the utilized packages during the analy-
sis, accompanied by their respective version numbers
and citations.

Results
Patient grouping after urodynamic assessment
Patients were recruited and examined as described in
Methods. Control group or “C” were mostly patients
undergoing treatment for stone disease with normal
bladder function. In all patients with LUTD due to BPO
urodynamic studies (UDI) were performed and blad-
der contractility and BPO were assessed simultaneously.
Based on questionnaires and urodynamic examination,
patients without detrusor overactivity were selected. This
group demonstrated increased detrusor pressure Pdet
and reduced urine flow Qmax without involuntary detru-
sor contractions during the filling phase. After UDI, four
urothelium-covered muscle-containing biopsies were
collected from the bladder dome of each patient by the
same urologist and total RNA isolated as described pre-
viously [18], or the biopsy was processed for proteomic
analysis as described in Methods. The first set of biopsies
was designated “before”. Three months after surgical de-
obstruction, bladder function was examined by UDI, and
the second sets of biopsies collected, designated “after”.
Men with BPO without DO were further sub-grouped
based on the average detrusor pressure at maximum flow
rate (PdetQmax). High pressure group (HP) (n=3) had
PdetQmax 107 +20.4 cmH20 before TURP, and PdetQ-
max 40.6+5.5 cmH20 after TURP, while the medium
pressure group (MP) (n=3) had PdetQmax 55+21.7
c¢mH20 before TURP, and PdetQmax 22 +2.64 cmH20
after TURP (Fig. 1). Both groups were similar in age (high
pressure 71+ 2.6 y.o., medium pressure 68 +9 y.0.), and in
both groups TURP reduced the post-void residual urine
volume to <50 ml (RV) and improved the maximum flow
rate (Qmax) (Fig. 1). Bladder contractility index (BCI)
was calculated using formula BCI=PdetQmax +5 Qmax
[33]. BCI was normal and generally higher in HP group
and weak in the MP group, and increased slightly in both
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Fig. 1 Age and urodynamic parameters in BPO patients before and after de-obstruction surgery. PdetQmax - maximal detrusor pressure at maximal
flow during voiding (cm H,0), Qmax - maximal flow during voiding (ml/sec), RV - post-void residual urine volume. BCI - bladder contractility,
calculated: BCl=Pdet Qmax +5 Qmax. BOOI - the bladder outlet obstruction index, calculated: BOOI=Pdet @ Qmax — 2 Qmax. Statistical
significance (*p <0.05; **p <0.01) is indicated
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groups after TURP, though the difference was not signifi-
cant (Fig. 1). In contrast, the bladder outlet obstruction
index (BOOI), represented by the equation: BOOI=Pde-
tQmax —2 Qmax [33], was significantly (p <0.05) higher
in HP group compared to the MP group before TURP,
and TURP significantly (p<0.001 and p<0.05 in HP and
MP groups, respectively) reduced BOOI to the values
below 20, indicating the relief of obstruction (Fig. 1).

Transcriptome analysis reveals differences between HP
and MP groups

Next-generation sequencing (NGS) was used to analyse
the transcriptomes of bladder dome biopsies collected
before and after TURP. Differentially expressed genes
(DEGs) were determined in high and medium pressure
groups compared to controls using DESeq2 (adjusted
p-value<0.1) and edgeR (adjusted p-value<0.1). As per
edgeR results, HP group, compared to controls, had on
average 578 up- and 277 — down-regulated genes before
TURP, and 679 up- and 472 — down-regulated genes after
TURP, with the expression levels of 510 genes normalised
(returned to control level) after de-obstruction, and 806
genes became de-novo regulated after TURP. MP group,
compared to controls, had on average more DEGs before
TURP (1310 up- and 186 down-regulated), with the over-
all number of DEGs diminishing after de-obstruction
(1093 genes normalized and 500 became de-novo regu-
lated) (Fig. 2A).

One of the objectives of this study was to select a robust
set of genes that can effectively distinguish between HP
and MP groups. To ensure the accuracy of our findings
and minimize false positives, we employed two widely
used tools, DESeq2 and edgeR, to identify DEGs between
the groups. This approach enabled us to identify genes
with significant differential expression in a highly con-
fident manner. To further enhance the reliability of our
results, we utilized Principal Component Analysis (PCA).
By transforming the original features (genes) into a new
set of variables known as principal components (PCs),
PCA effectively captures the underlying patterns in the
data. Using this approach, we selected the genes that fell
within the top or bottom 20% of the loading range for the
top six principal components (PCs). These selected genes

(See figure on next page.)

Page 6 of 20

are considered as most significant contributors to distin-
guish the studied groups. In the final stage of the analysis,
we compared the genes identified as highly influential by
PCA and the list of differentially expressed genes (DEGs)
obtained using both DESeq2 and edgeR tools. The com-
mon DEGs intersection represented a set of genes that
should serve as reliable classifiers for the investigated
groups.

This pipeline yielded 10 genes discriminating between
HP and MP groups before TURP (Fig. 2B, all genes
expressed lower in HP dataset than in the MP data-
set) and 12 genes, discriminating between “before” and
“after”-TURP samples of HP group (7 were up- and 5
down-regulated in “after” HP group compared to the
“before” HP group) (Fig. 2B). The PCA carried out
using 10 HP classifier genes could reliably discriminate
between HP and MP groups before TURP (Fig. 2C),
while 12 de-obstruction classifier genes could discrimi-
nate between after- and before-TURP samples of the HP
group (Fig. 2D). Interestingly, the combination of both
classifiers (22 genes) applied to all available datasets
including controls demonstrated a clear separation of
“before” HP and “before” MP groups from each other and
from controls. The samples collected 3 months after de-
obstruction were more similar to each other and grouped
closer to controls, indicating at least partial restoration
of gene expression changes after the relief of obstruction
(Fig. 2E).

Effects of de-obstruction on dysregulated biological
processes in the high pressure (HP) group

In order to gain an insight into the biological processes
in high-pressure BPO before and after de-obstruction,
we resorted to Gene Ontology (GO) Over Representation
Analysis (ORA). We created a semantic similarity matrix,
based on the information content of their most informa-
tive common ancestor (Resnik method), for a given list
of GO terms. The terms that are closer in the hierarchy
or share more common ancestors are likely to be more
semantically similar. After removing the redundant GO
terms based on a semantic similarity score threshold of
0.7, remaining GO terms were grouped by clustering the
semantic similarity matrix using the binary cut method.

Fig. 2 Differentially expressed mRNAs in BPO patients’ groups before and after TURP. A Total number of differentially expressed genes (DEGs)

in HP and MP groups compared to controls (edgeR (adjusted p-value<0.1)). B Group classifier genes, determined as an overlap between edgeR,
DESeq?2 and PCA as described in the text. The pair-wise comparisons HP vs. MP before TURP and HP before and after TURP are indicated. C Principal
component analysis (PCA) based on normalized read counts of HP vs. MP group 10 gene classifiers. Before_high samples are shown as red labelled
dots, and before_medium as yellow labelled dots. D PCA based on normalized read counts of HP before TURP vs HP after TURP 12 gene classifiers.
Before_high samples are shown as red labelled dots, and after_high as grey labelled dots. E PCA applied to all available datasets including controls

using the combination of both classifiers (22 genes)
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A treemap view of GO term clusters, where each tile and
colour represent a term and cluster respectively, is shown
in Fig. 3A for the DEGs in HP group before TURP com-
pared to controls. In the treemap plot, the space used by
the cluster is proportional to the number terms in the
given cluster. Classical pathway of complement activation
was the predominant biological process, with a number
of other immune-related processes present (B cell acti-
vation, neutrophil migration, phagocytosis). After de-
obstruction the overall picture of the regulated biological
processes significantly changed, with the cell division-
related GO terms becoming predominant (Fig. 3B).

The word clouds in Fig. 3C and D illustrate the hubs
of signalling involved in the dysregulated processes,
and while most of them are up-regulated in HP blad-
ders before TURP (Fig. 3C), a large proportion becomes
down-regulated after TURP (Fig. 3D). Ridge plots indi-
cated a shift in the gene expression: while most immune-
related processes were up-regulated in the “before” HP
samples (Fig. 3E), after TURP there was a down-reg-
ulation of genes involved in DNA replication and cell
division and up-regulation of genes related to muscle
contractility, while the Log2 fold change (FC) of the genes
involved in the immune response processes was reduced
but did not revert to the control levels, pointing to ongo-
ing inflammatory processes in the HP bladders 3 months
after TURP (Fig. 3F).

Effects of de-obstruction on dysregulated biological
processes in the medium pressure (MP) group

In accordance with the higher number of DEGs in
“before” MP samples (Fig. 2A), there was a considerably
higher amount of GO BPs in “before” MP vs. control than
in “before” HP-before vs. control (Fig. 4A). Here the pre-
dominant processes were immune response, reflected by
the highly upregulated hubs including TNEF, IL1B and IL6
(Fig. 4C). Similar to the HP group, TURP resulted in sig-
nificant changes in cell proliferation processes (Fig. 4B)
and a general down-regulation of the main signalling
molecules in the “after” MP dataset (Fig. 4D). While
ridge plots of the MP samples showed up-regulation of
the gene expression in the dysregulated pathways before
TURP (Fig. 4E), there was a down-regulation of gene sets
involved in DNA replication and mitotic cell division

(See figure on next page.)
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after TURP, while the genes responsible for immune
response processes remained activated (Fig. 4F).

We analysed the expression of selected genes, corre-
sponding to the defined morphological compartments of
the bladder. The detrusor-specific genes showed higher
expression levels in the HP group compared to both
controls and the MP group (Supplementary Fig. S1A).
TURP resulted in up-regulation of the detrusor genes
in both HP and MP groups (“after” datasets), indicative
of the detrusor changes in line with an improvement of
bladder contractility. Urothelial genes, which were sig-
nificantly down-regulated in the HP group before TURP,
have slightly increased but did not reach control levels
(Supplementary Fig. S1B). Similarly, TURP did not have
pronounced effects on the expression levels of fibroblast
genes (Supplementary Fig. S1C).

Proteomics analysis and integration of transcriptome
and proteome data
The proteins were extracted from the bladder biop-
sies and analysed by nanoLC-MS/MS as described
in Methods. The number of differentially expressed
proteins (DEPs) in each group was similar, with an
average of 143 up- and 52 down-regulated DEPs in
before_high, 193 up- and 70 down regulated DEGs in
after_high, 116 up- and 49 down-regulated in before_
medium and 174 up- and 64 down-regulated DEPs
after_medium compared to controls (Fig. 5A).
Hierarchical clustering analysis revealed a high pro-
teome similarity between the HP and MP groups before
TURP (Fig. 5B). There was a shift in the protein compo-
sition but preserved inter-group similarity after TURP
(Fig. 5B), which was confirmed by PCA using top 500
variable proteins: before_high clustered together with
before_medium and away from the after_high/after_
medium cluster. Both clusters are well separated from
the controls, indicating significant differences in the
proteomes of BPO, which were not completely normal-
ized by TURP (Fig. 5C). In the HP group, 10 DEPs were
shared with DEGs, with 8 proteins showing similar reg-
ulation (Fig. 5D) In the MP group 24 DEGs and DEPs
were consistent, with only one being oppositely regulated
(Fig. 5E).

Fig. 3 Gene Ontology Over-Representation Analysis of requlated mRNAs in HP group before and after de-obstruction. A and B treemap

views of GO-term clusters (Biological processes, BPs), where each tile and colour represent a term and cluster, respectively. The list of GO terms

was converted into a semantic similarity matrix using binary cut method. Tile size and group representatives of each cluster are corresponding

to the GO terms'size. C and D Word clouds of up-regulated (in red) and down-regulated (in blue) mRNAs, font size corresponding to the frequency
of appearance in GO BPs. E and F Ridge plots of GO ORA showing average Log2FC of the main enriched genes. A, C and E treemap, word cloud
and ridge plot for HP group before_HP vs. control DEGs, (B, D and F) treemap, word cloud and ridge plot for HP group after_HP vs. control DEGs
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We carried out GO ORA with DEPs in both sample
groups, and in agreement with PCA sample cluster-
ing, observed a high degree of similarity: both groups
reported antigen processing and presentation as predom-
inant BP before TURP, and the word clouds representing
the main hubs of signalling were also similar between the
groups (Fig. 6A, E).

Neutrophil Cytosolic Factor proteins NCF, and trans-
porter associated with antigen processing (TAP) were
prominent in both datasets, consistent with antigen
processing and presentation processes being activated
(Fig. 6A, E). IPA showed similarities in the activated path-
ways, however, the MP group had a higher number of
immune-related pathways (Fig. 6C and G). De-obstruc-
tion resulted in partial restoration of altered BPs in both
groups (Fig. 6B for HP, Fig. 6F for MP), however, IL8
signalling remained the main activated pathway in the
MP group (Fig. 6G and H). mTOR signalling, which was
activated in the HP group before TURP, was inhibited
after TURD, in line with reduced metabolic and growth
activity (Fig. 6C and D). 3-phosphoinositide biosynthe-
sis and degradation pathways became prominent in both
groups after TURP (Fig. 6D and H). In line with the tran-
scriptome analysis of the expression levels of urothelial
genes (Fig. S1B) which showed strong down-regulation
of UPK1A, UPK2 and UPK3A genes in particular in the
“before” HP mRNA dataset, we observed reduced levels
of UPK2 and UPK3A proteins in the HP group before
TURP (before_high, Supplementary Fig. S2A).

De-obstruction normalized SOX21 expression levels

and affected their potential target genes

In order to gain insights into the regulation of tran-
scription factors (TFs) during BPO and de-obstruction,
we mapped the DEGs identified in the “before” HP and
“before” MP datasets against the available list of TFs
from TRED [23], ITFP [25], TRRUST [22], and Mar-
bach [24] databases. Ten TFs, expressed and regulated
in the BPO samples are shown in Fig. 7A. Most TFs
were up-regulated in BPO before TURP and persisted
at a high level 3months after TURP: ARID5A, GSTAI,
EGR1, EGR3, ATF3, FOSL1. In contrast, SOX21 was up-
regulated in both BPO groups HP and MP, but normal-
ized after TURP (Fig. 7A). We further investigated its

(See figure on next page.)
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relevance for gene expression regulation by mapping all
its potential target mRNAs in all four datasets compared
to control (before_high, before_medium, after_high and
after_medium) (Fig. 7B). The mRNAs, predicted to be
regulated by SOX21, cluster in 5 groups, with clusters C2,
C4 and C5 showing the expected down-regulation in the
“after” datasets (the heatmap in Fig. 7B), when SOX21
itself has returned to the normal levels (Fig. 7A). Using
the target mRNA levels from clusters 2, 4 and 5 “before”
HP dataset as a source, we investigated the regulated
BPs and most significant signalling hubs in each cluster
(Fig. 5B). BPs in cluster 2 are mostly immune response,
with thrombospondin THBS4 and interleukin 31 recep-
tor IL31RA being the most important pathway com-
ponents. BPs in clusters 4 and 5 are responsible for cell
cycle regulation, and after SOX21 mRNA levels returned
to control after TURP, the genes involved in these path-
ways were down-regulated. The transcriptome data on
SOX21 target expression is in agreement with the pro-
teome results in cluster C2 (Fig. 7C) — most proteins
in this cluster were up-regulated before TURP, when
SOX21 mRNA levels were high, and returned to control
levels or were down-regulated after TURP. THBS4 is a
component of this DEPs cluster, controlling some of the
BPs (word cloud, Fig. 7C). The mRNA and protein levels
of SOX21 target THBS4 were increased in HP and MP
groups before TURP, and returned to control levels after
TURP (Supplementary Fig. S2B).

Discussion

BPO induces significant remodelling in the human
urinary bladder, which demonstrates a very similar
reaction to increased outlet resistance as the heart
subjected to pressure overload [34]. Based on the
observations made in animal models of pBOO, BOO
is a chronic gradually progressive disease. Hypertro-
phy is the bladder’s initial response which most likely
advances further until the final decompensatory stage,
loss of contractility [35]. On the molecular level, these
processes are characterised by hypoxia and inflamma-
tory response, which induce organ fibrosis [5]. Indirect
evidence collected in humans also points to the fact
that BPO is a progressive disease, which can be delayed
by pharmacological treatment with alpha-1 adrenergic

Fig. 4 Gene Ontology Over-Representation Analysis of regulated mRNAs in MP group before and after de-obstruction. A and B treemap

views of GO-term clusters (Biological processes, BPs), where each tile and colour represent a term and cluster, respectively. The list of GO terms

was converted into a semantic similarity matrix using binary cut method. Tile size and group representatives of each cluster are corresponding

to the GO terms'size. C and D Word clouds of up-regulated (in red) and down-regulated (in blue) mRNAs, font size corresponding to the frequency
of appearance in GO BPs. E and F Ridge plots of GO ORA showing average Log2FC of the main enriched genes. A, C and E treemap, word cloud
and ridge plot for MP group before_MP vs. control DEGs, B, D and F treemap, word cloud and ridge plot for MP group after_MP vs. control DEGs
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antagonists and/or 5-alpha reductase inhibitors [36,
37]. In humans, monitoring urodynamic changes in the
obstructed bladder after TURP allows the assessment
of functional recovery, although drawing conclusions
about the morphological alterations in the affected
organ is difficult because a very limited number of
studies offer relevant follow-up information. Increased
bladder pressure and a reduced flow rate are the physi-
ological parameters seen to be improved by therapeutic
measures including surgical de-obstruction. Ultra-
sound measurements of the bladder or detrusor wall
thickness, indicative of muscle hypertrophy, have been
proposed to non-invasively monitor bladder remodel-
ling during BPO, with significant differences observed
between obstructed and non-obstructed patients [38,
39]. Bladder wall thickness was decreased one month
after TURP surgery, indicating a recovery trend after
de-obstruction [40]. However, there were no sympto-
matic or urodynamic gains from de-obstruction in men
with BPO and detrusor underactivity [41], implying
that the timing of surgery is crucial for the outcome.
Indeed, our previous study of the molecular changes in
bladder dome biopsies from patients with different uro-
dynamic phenotypes [6] showed profound gene expres-
sion changes in BPO-induced detrusor underactivity
leading to the loss of contractility.

This study investigated the changes in cell signal-
ling processes within BPO-affected bladders before and
after de-obstruction. The analysis focused on examin-
ing the transcriptomes and proteomes of bladder dome
biopsies collected from men who experienced urody-
namically confirmed functional improvement follow-
ing TURP. Age-matched patients with BPO without DO
were divided into two groups based on the PdetQmax
values recorded by UDI before de-obstruction: high and
medium pressure (HP and MP) groups. PdetQmax was
the only statistically significant parameter, separating the
HP and MP groups (Fig. 1), however, the MP group had a
slightly higher residual volume (RV) and a considerably
lower BCI, although the differenece in BCI did not reach
statistical significance. Three months after de-obstruc-
tion surgery, the voiding parameters PdetQmax, Qmax
and RV were significantly improved in both groups,

(See figure on next page.)
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without any significant inter-group difference in the val-
ues after TURP.

The small number of patients per group (n=3) was
a limitation of this study, which did not allow certain
observed trends in the UDI parameters to reach statis-
tical significance. The mean age of the control patients
(n=6) was lower than in patients with BPO, because due
to the increasing age-related prevalence of BPO in the
male population, it was impossible to recruit truly age-
matched controls without any LUTS.

The overall number of gene expression changes in both
groups compared to controls without LUTS showed an
increased number of DEGs in the MP group before TURP,
and comprehensive bioinformatics analysis revealed 10
molecular classifiers (CYP1B1, TIPARP, AREG, FOXEI,
CYSRT1, PLAAT2, OVOL1, MYBPC1, CDX2, CYP1Al)
reliably differentiating between the HP and MP groups
before TURP in PCA. The proteins encoded by these
genes contribute to oxidative homeostasis (CYP1BI,
CYP1A1, CYSRT1), are transcription factors (CDX2,
FOXE1 which targets TGF-beta, EGF/TGF-family mem-
ber AREG, OVOL1), are involved in muscle contraction
(MYBPC1) and immune function (TIPARP). Comparison
of bladder transcriptomes before and after TURP in the
HP group revealed 12 markers (CXCL13, BHMT, EGR3,
CCL19, CCL21, NR4A3, CRTACI, SAA1, UPK2, NR4A1,
CCL18, UPK1A), discriminating the samples collected at
two time-points from the same patients, indicating that
de-obstruction induced significant alterations in the gene
expression profiles of the affected bladders. Interestingly,
here in addition to transcription factors (NR4A1, BHMT,
EGR3, NR4A3) and inflammatory markers (CXCL13,
CCL19, CCL21, CCL18 and SAA1) we discovered two
uroplakin genes (UPK2 and UPKI1A). Further analysis
revealed that these genes were significantly down-reg-
ulated before TURP in the HP group, compared to con-
trols and the MP group. Their expression was improved
by de-obstruction but did not reach control levels. A
combination of the 22 markers, used in PCA, revealed
that before TURP the MP group was highly different
from both the HP group and the controls. Although
de-obstruction did not completely restore gene expres-
sion in the HP and MP groups, the resulting profiles in

Fig. 5 Differentially requlated proteins in BPO groups. A Total number of differentially expressed proteins (DEPs) in HP and MP groups compared
to control before and after de-obstruction (adjusted p-value<0.1). B Heatmap and hierarchical clustering based on Log2FC of normalized
expression values of all DEPs compared to controls with p-value< 0.05. Proteins are represented in y-axis and patients’samples before and after
de-obstruction are shown in x-axis. One minus Pearson correlation metric was used for clustering accompanied with average linkage method.

C Principal component analysis using top 500 variable proteins in HP and MP samples before and after TURP, and control samples. D Ten
differentially expressed mRNAs and proteins in HP group before TURP. E 24 differentially expressed mRNAs and proteins in MP group before TURP.
Regulation of protein levels (proteomics) is shown in orange, and mRNA (transcriptomics) shown in blue
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the “after” samples were more similar to each other and
closer to the controls. Thus, our unbiased bioinformat-
ics analysis of the whole transcriptomes revealed a partial
normalization of gene expression, in line with functional
improvement observed by UDIL.

The analysis of the biological processes and activated
pathways in HP and MP groups before and after TURP
showed considerable improvement but no compete
reversal of the BPO-induced bladder gene expression
deterioration. Activation of the immune response pro-
cesses was a prominent feature in both patient groups
before TURP, but the hallmarks of inflammation and
the main activated pathways were strikingly different
in both groups before TURP. Complement activation
was the main up-regulated process in the HP group,
whereas the MP group showed more advanced signs of
immune response, including significant up-regulation
of TNF-driven inflammation, and concomitant IL6,
IL1B and PTGS2 up-regulation. B cell activation, neu-
trophil migration and humoral immune response with
activated cytokine production were the top BPs in MP
“before” samples, while the complement activation was
the top BP in HP “before” samples. These differences,
together with the higher number of DEGs, might be an
indication of a progressive bladder deterioration in the
MP group in response to BPO. Complement activa-
tion is becoming increasingly recognized as a key con-
tributor to the beginning sterile inflammation, when
the damaged tissues release danger signals and trigger
complement, which acts on a range of leukocytes to
augment and bridge the innate and adaptive immune
systems [42]. Complement triggers phagocytosis [43]
and the subsequent neutrophil infiltration, observed in
the MP group. Thus, the changes in immune response
in the obstructed bladder might serve as an indicator
of the disease progression. Likewise, our earlier study
[6] showed a steady increase of DEGs in obstructed
acontractile patients (UA group) compared to those
who were still able to void (BO group). After TURP
there was a compensatory down-regulation of many
affected processes in both groups, particularly those
controlling cell division and cell cycle progression.
Interestingly, the expression levels of detrusor muscle

(See figure on next page.)
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genes, which were already significantly up-regulated
in the HP “before” samples but down-regulated in MP
“before” samples, were elevated following TURP in
both groups, accompanied by the activation of muscle-
and contractility-related pathways. This indicates that
de-obstruction was beneficial for bladder contractility.
In the “before” MP group, we observed activated TNF-
driven signalling and concomitant down-regulation
of detrusor gene expression. This could be an indica-
tion of the adverse effects of bladder inflammation on
smooth muscle contractility, as previously described in
TNE-alpha treated SMCs in vitro [44], and as a con-
sequence result in the lower PdetQmax before TURP
compared to the HP group, where no such processes
were recorded. The down-regulated BPs of “cornifi-
cation” and “intermediate filament organization” in
the HP group “before” samples contain many urothe-
lial genes, including uroplakins, all of which were sig-
nificantly down-regulated. This might be indicative of
urothelial dysfunction, exacerbated by high bladder
pressure, in humans similar to the animal models of
pBOO [45, 46]. A previous study showed significantly
lower expression of E-cadherin, and a higher number
of apoptotic cells in humans with BPO [47], confirm-
ing the adverse effects of BOO on urothelial morphol-
ogy and function.

Proteome analysis indicated a significant difference
in protein composition between the ‘before’ and ‘after’
TURP states in both the HP and MP groups. Overall,
less DEPs were detected (195 for HP, 165 for MP before
TURP compared to controls) compared to the DEGs
(855 for HP, 1496 for MP before TURP compared to con-
trols). Immune processes were highly regulated in the
proteomes of BPO patients and showed partial normali-
zation after de-obstruction. We also observed changes
in the metabolic and proliferative processes, evident by
alteration of mTOR and 3-phosphoinositide biosynthesis
and degradation pathways after TURP.

To comprehend the impact of obstruction on the fac-
tors driving gene expression changes, we investigated
the expression levels of known or predicted transcrip-
tion factors (TFs) and regulators in the transcrip-
tomes of all bladder biopsies before and after TURP. In

Fig. 6 Gene Ontology Over-Representation Analysis and IPA pathway analysis of regulated proteins in HP and MP BPO groups before and after
de-obstruction Treemap views of GO-term clusters (Biological processes, BPs) for DEPs in HP group before (A) and after (B) deobstruction, compared
to controls. Word clouds of up-regulated (in red) and down-regulated (in blue) proteins, font size corresponding to the frequency of appearance

in GO BPs. Top canonical IPA pathways with non-zero z-score for HP before TURP samples (C) and HP after TURP samples (D) compared to controls.
Treemap views of GO-term clusters (Biological processes, BPs) for DEPs in MP group before (E) and after (F) de-obstruction, compared to controls.
Word clouds of up-regulated (in red) and down-regulated (in blue) proteins, font size corresponding to the frequency of appearance in GO BPs. Top
canonical IPA pathways with non-zero z-scores for MP before TURP samples (G) and MP after TURP samples (H) compared to controls
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particular, we looked for TFs which were altered in the
“before” state and normalized 3 months after surgery.
Only 2 TFs matched these criteria: SOX21, which was
significantly up-regulated in both HP and MP groups,
and NR1I3 which was specifically down-regulated in
the HP group.

The SRY-Box Transcription Factor 21 (SOX21) par-
ticipates in regulating cell proliferation and differentia-
tion across various tissues [48]. A database search was
performed to identify known and predicted mRNA
targets regulated by SOX21. Subsequently, using the
mRNA levels of these targets we performed hierarchi-
cal clustering analysis to examine the correlation of
their expression level changes with the up-regulation
of SOX21 and its subsequent normalization. We iden-
tified three distinct gene clusters, denoted as Cluster
2, Cluster 4, and Cluster 5, consisting of 7, 34, and 16
genes, respectively, which were regulated in accord-
ance with SOX21 levels before and after TURP. Genes
in Cluster 2 were involved in the immune-related BPs
(granulocyte chemotaxis, antimicrobial response, etc.)
with thrombospondin THBS4 being a prominent sig-
nalling molecule; these genes were highly elevated in
“before” HP and MP and reduced after TURP. The
genes in Clusters 4 and 5 were related to the processes
of cell division and chemotaxis; they were signifi-
cantly elevated in the MP group, and down-regulated
after de-obstruction. The proteome analysis of SOX21
targets revealed one protein cluster, also containing
THBS4 and significantly down-regulated concomitant
with normalization of SOX21 expression.

THBS4 is a glycoprotein mediating cell-to-cell and
cell-to-matrix interactions. It is involved in cellular
proliferation, migration, adhesion and attachment,
inflammatory response and adaptive responses of the
heart to pressure overload and in myocardial function
and remodelling [49]. THBS4 was induced after outlet
obstruction in rodents, and considered to be a sensi-
tive marker of obstruction, although its knock-out in
mice did not affect bladder growth or repression of

(See figure on next page.)
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contractile markers [50]. Here we confirm the up-reg-
ulation of THBS4 in human BPO at both protein and
mRNA levels, and its normalization 3 months after de-
obstruction. Importantly, THBS4 can be detected in
urine as was shown in human urinary proteomics stud-
ies from healthy and diseased individuals [51], making
it a potential non-invasive BPO biomarker candidate,
if its levels in the urine from men with BPO correlate
with the functional impairment caused by obstruction.

Here we established a possible link between SOX21
up-regulation in obstructed bladders, and an increased
cell proliferation leading to organ hypertrophy. Earlier
studies showed that SOX21 suppressed differentiation
of airway progenitor cells during lung development and
promoted cell division [52]. Similarly, higher concentra-
tion of SOX21 inhibited neuron formation and instead
promoted progenitor maintenance [48]. These data are
in agreement with our observation that SOX21 targets in
the Clusters 4 and 5 regulate cell cycling and proliferation
pathways. Elucidating the mechanisms, which induce
the high responsiveness of SOX21 to obstruction would
be important for understanding the progressive changes
caused by BPO and may represent a novel approach for
the diagnosis and treatment of BPO.

Conclusions

We present the first comprehensive characterization
of the bladder gene expression changes in the human
patients with BPO before and 3 months after TURP.
We demonstrated that the transcriptome profiles and
predicted biological processes were different in the
bladders with significantly different PdetQmax before
de-obstruction, and the patients with average PdetQ-
max 55+21.7 cmH20O before TURP and lower BOOI
and BCI showed a more advanced organ deteriora-
tion compared to the patients with 107 +20.4 cmH20
before TURP and higher BOOI. Our findings reveal
substantial yet incomplete normalization of cell sig-
nalling pathways three months after TURP, consistent
with improved urodynamic parameters. Transcription

Fig. 7 Transcription factors (TFs) regulated by BPO and role of SOX21 in obstruction-driven bladder remodelling. A Bubble plot of TFs detected
regulated in BPO datasets. Log2FC of up-regulated (in brown-red) and down-regulated (in blue) TF are shown in each dataset (HP before and after
TURP, MP before and after TURP) compared to controls. A graph shows normalized read counts for SOX21 mRNA in all samples. B DEGs

regulated by SOX21 and their involvement in biological processes. Heatmap and hierarchical clustering of all predicted SOX21 mRNA targets

in BPO datasets based on Log2FC. Treemap views of GO-term clusters (Biological processes, BPs) for DEGs in clusters 2,4 and 5, which showed
regulation after de-obstruction. Word clouds of up-regulated (in red) and down-regulated (in blue) DEGs in each cluster, font size corresponding

to the frequency of appearance in GO BPs, regulation based on log2FC values in before_high vs. control transcriptome dataset. C DEPs regulated
by SOX21 and their involvement in biological processes. Heatmap and hierarchical clustering of all predicted SOX21 protein targets in BPO datasets
based on Log2FC. Treemap views of GO-terms (Biological processes, BPs) for DEGs in cluster 2, which showed regulation after de-obstruction. Word
clouds of up-regulated (in red) and down-regulated (in blue) DEPs in cluster 2, font size corresponding to the frequency of appearance in GO BPs,
regulation based on log2FC values in before_high vs. control proteome dataset



Akshay et al. BMC Urology (2024) 24:33
A Sox21 [ ] o
NR1I3 [ ]
GSTA1 O ® [ ) O
FOSL1 O [ ] [ ]
FOS [ ]
EGR3 (@} [ ] [ )
EGR1 @] [ ] O
BHLHA15 [ ] [ ] [ ]
ATF3 O [ ] [ ]
ARIDSA [ ] O [ ) [ ]
5 —
—_ = [<}
o = = e
£ [ 5 €
g £ 8 8
2 8 2 @
£ ¢ £ g
L : =}
=) < = =1
= ° 3 5
o il g £
o 2 o n
@ b5 S 19}
o b E=
B E :

C1

Cc3

Log2FC
6
150
3
0
100
N
5
50
size
@ 1w
() o —— i
U 8 8
9] 1S g 1S °
s U ]
@ Q L =
E=4 Q S c
© S 1]
2 o
Z
| I'after_high.vs.control log2FC

10
after_medium.vs.control I 5

|

BPs cluster 2

... negative rogutation
granulocyte chemotaxis oo MBS

antimicrobial
humoral response
ok [
development S22

e
transport copuisson

THBS4

pi3 CXCL5 a

soxz21  CP
“

L31RA |

3

BPs cluster 4

cell cycle ch

ot mecated tOMC nuclear ANHgON via MHC class If
it E

pemeay diyision

i

THBS4

Fig. 7 (Seelegend on previous page.)

‘antigen processing

cell chemotaxis

cxeu LEP

after.high_vs_control
after.medium_vs_control
before.high_vs_control

before.medium_vs_control

before_high.vs.control

“ before_medium.vs.control

nuclear e
s omatid
division segregation neutrophil

0
I-s
-10

BPs cluster 5

cerebellar
granular layer

development

tokineti
G2/M transition of mitotic cell cycle (L
rocess

ethanol

oxidation

animicrobial bumersi
immune resp
medintedty  DNA ligation

bleb
chemotaxis assembly

DEPs cluster 2

STAT5A
S
logzrc Trewa GLS LETM1
10 ruars ., EIF2A
5 carpte  PSPH
0 il RAB31

KY N U MRPL38 .

RCSD1 TsFm

l<5
-10

Page 17 of 20

e

DYoo



Akshay et al. BMC Urology (2024) 24:33

factor SOX21 and its target mRNAs including throm-
bospondin THBS4, regulating pivotal immune and
proliferation processes, were highly sensitive to de-
obstruction. Our study suggests that a combination
of UDI, and a preferably non-invasive indicator of
the immune response activation in the bladder might
be beneficial when selecting an optimal intervention
point to mitigate loss of contractility.

Abbreviations

BPO Benign prostatic obstruction

NGS Next-generation sequencing

DEGs differentially expressed genes

DEPs differentially expressed proteins

mMRNA messenger RNA

GO ORA  Gene ontology over-representation analysis
QPCR quantitative real-time polymerase chain reaction
FC fold change

ns. not significant
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