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Abstract 

Prostate cancer (PCa) is a complex and biologically diverse disease with no curative treatment options at present. 
This study aims to utilize computational methods to explore potential anti-PCa compounds based on differentially 
expressed genes (DEGs), with the goal of identifying novel therapeutic indications or repurposing existing drugs. The 
methods employed in this study include DEGs-to-drug prediction, pharmacokinetics prediction, target prediction, 
network analysis, and molecular docking. The findings revealed a total of 79 upregulated DEGs and 110 downregu‑
lated DEGs in PCa, which were used to identify drug compounds capable of reversing the dysregulated conditions 
(dexverapamil, emetine, parthenolide, dobutamine, terfenadine, pimozide, mefloquine, ellipticine, and trifluoperazine) 
at a threshold probability of 20% on several molecular targets, such as serotonin receptors 2a/2b/2c, HERG protein, 
adrenergic receptors alpha-1a/2a, dopamine D3 receptor, inducible nitric oxide synthase (iNOS), epidermal growth 
factor receptor erbB1 (EGFR), tyrosine-protein kinases, and C-C chemokine receptor type 5 (CCR5). Molecular docking 
analysis revealed that terfenadine binding to inducible nitric oxide synthase (-7.833 kcal.mol−1) and pimozide binding 
to HERG (-7.636 kcal.mol−1). Overall, binding energy ΔGbind (Total) at 0 ns was lower than that of 100 ns for both the 
Terfenadine-iNOS complex (-101.707 to -103.302 kcal.mol−1) and Ellipticine-TOPIIα complex (-42.229 to -58.780 kcal.
mol−1). In conclusion, this study provides insight on molecular targets that could possibly contribute to the molecular 
mechanisms underlying PCa. Further preclinical and clinical studies are required to validate the therapeutic effective‑
ness of these identified drugs in PCa disease.
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Introduction
Cancer is a condition characterized by genetic or epige-
netic changes in somatic cells, leading to abnormal cell 
growth that can potentially spread to other parts of the 
body. These abnormal growths, known as neoplasms or 
tumors, can manifest as localized masses or diffuse dis-
tributions [1, 2]. Globally, cancer is a major cause of mor-
tality, accounting for approximately 9.6  million deaths, 
and it is projected that around 15 million new cases will 
be diagnosed as the world population reaches 7.5 billion 
by 2020 [3]. Furthermore, there is an anticipated annual 
increase of approximately 420  million new cancer cases 
by 2025, indicating a rising incidence of cancer over the 
coming years [2].

The causes of cancer are attributed to both internal fac-
tors (such as inherited mutations, hormonal imbalances, 
and immune conditions) and external or environment 
factors (such as tobacco use, diet, exposure to radiation, 
and infectious agents). Several modifiable risk factors 
contribute significantly to the development of cancer, 
including tobacco use, being overweight or obese, lead-
ing a sedentary lifestyle, excessive alcohol consumption, 
exposure to certain infections, outdoor and indoor air 
pollution, and exposure to occupational carcinogens [4].

Prostate cancer (PCa) is a complex and diverse dis-
ease with multiple biological characteristics [5]. PCa is 
the second most commonly diagnosed cancer and the 
fifth leading cause of cancer-related deaths among men 
worldwide [5, 6]. In 2020, 1,414,000 new cases of PCa 
were estimated with 375,304 deaths attributed to the 
disease [6]. Moreover, it has been forecasted that by 
2040, 2.43 million new cases of PCa with 740,000 deaths 
worldwide will be recorded [7, 8]. PCa ranks as the most 
frequently diagnosed cancer in 112 countries and is the 
leading cause of cancer mortality in 48 countries [9]. 
While data on PCa incidence and mortality in Africa is 
limited, with specific information available for countries 
such as Mauritius, Zimbabwe, and South Africa, the inci-
dence of PCa in Africa and Asia tends to be lower com-
pared to other regions [6].

PCa predominantly affects middle-aged men, typi-
cally between the ages of 45 and 60, and it is a leading 
cause of cancer-related deaths in Western countries [10]. 
Diagnosis of PCa commonly involves techniques such as 
prostate biopsy, prostate-specific antigen (PSA) testing, 
digital rectal examination, magnetic resonance imaging 
(MRI), and health screenings [5]. Risk factors associated 
with PCa include family history, ethnicity, age, obesity, 
and environmental factors. PCa exhibits heterogene-
ity both in terms of epidemiology and genetics [5]. The 
interplay between genetics, environmental influences, 
and social factors contributes to race-specific variations 
in PCa survival rates, leading to observed differences in 

the epidemiology of the disease across different countries 
[11]. It has been noted that almost all PCa often acquire 
resistance to become castration-resistant prostate cancer 
(CRPC) based on dysfunctional androgen receptor activi-
ties due to mutations, loss of expression or other hormo-
nal receptors [12]. Effective treatment of CRPC is still 
challenging and ongoing research efforts have provided 
drugs that only prolong overall survival of CRPC patients 
by few months [12].

PCa treatment has seen significant advancements in 
recent years, with ongoing research aimed at improving 
patient outcomes and quality of life. According to Chen 
and Zhao [13], and Varaprasad et al. [8], the current state 
of PCa treatment includes (A) Standard treatments such 
as (i) Surgery (Radical prostatectomy) which involves the 
surgical removal of the prostate gland and surrounding 
tissue. (ii) Radiation therapy (External beam radiation 
therapy (EBRT) and brachytherapy (internal radiation)) 
which are used to target and kill cancer cells in the pros-
tate. (iii) Hormone therapy which also known as andro-
gen deprivation therapy (ADT), reduces levels of male 
hormones that can stimulate cancer growth. (iv) Chemo-
therapy (such as docetaxel and cabazitaxel drug) is used 
primarily for advanced PCa that is resistant to hormone 
therapy. (v) Targeted therapy (such as abiraterone and 
enzalutamide drug) target specific pathways involved in 
PCa growth. (vi) Immunotherapy (such as Sipuleucel-
T) is designed to stimulate the body’s immune system 
to attack cancer cells. (B) Emerging treatments include 
(i) PARP Inhibitors (such as Olaparib drug) are used for 
patients with specific genetic mutations. (ii) Radiop-
harmaceuticals (such as radium-223 dichloride) target 
cancer cells with radiation while minimizing damage to 
surrounding tissues. (iii) Advanced immunotherapies 
(such as checkpoint inhibitors and personalized cancer 
vaccines) and nanotherapies.

The existing treatment options for PCa are not curative, 
and it has been recognized that a single targeted therapy 
is insufficient to significantly impact the progression of 
PCa [14]. As a result, the exploration of medicinal plants 
as alternative source for PCa treatment is being investi-
gated due to their poly-pharmacological effects. Com-
bined therapies involving current treatment options for 
PCa have shown promise in extending patients’ lifespans 
and suppressing tumor growth. Additionally, the repur-
posing of existing drugs such as metformin, naftopidil, 
triclosan, niclosamide, and glipizide for the treatment of 
PCa has been proposed [15, 16].

Understanding the molecular events involved in the 
development of metastatic PCa has the potential to 
identify biological determinants that can aid in prog-
nosis and development of more effective therapies [17]. 
Differentially expressed genes (DEGs) analysis in PCa 
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offers valuable insights by identifying genes with altered 
expression levels, highlighting potential key players in 
the disease, though with some inherent limitations. The 
rationale of this present work was based on the fact that 
computational analyses of DEGs in metastatic PCa allows 
comprehensive understanding of molecular changes, and 
that identification of drugs that modulate these genes 
toward normal expression levels could pave the way for 
targeted therapies. Computational techniques have been 
instrumental in drug repurposing, where existing drugs 
are tested for new therapeutic uses. By analyzing DEGs, 
it has been possible to predict how well-known drugs 
might affect new targets, and this approach has led to the 
selection of several compounds as promising candidates 
for treating diseases such as COVID-19 and cancer [15, 
16, 18].

Computational methods have revolutionized the field 
of drug discovery and repurposing, particularly for com-
plex diseases like PCa. These methods leverage advanced 
algorithms, machine learning, and big data analytics to 
accelerate and refine the drug development process. Key 
computational approaches include virtual screening and 
molecular docking, pharmacophore modeling, quan-
titative structure-activity relationship (QSAR) models, 
genomic and proteomic data integration, artificial intel-
ligence, deep learning and machine learning in clinical 
trials, and drug repurposing [19, 20]. The integration of 
advanced computational methods into PCa research 
is accelerating the discovery of new treatments and the 
repurposing of existing drugs. These technologies offer 
promising avenues for improving patient outcomes by 
enabling more precise and personalized approaches to 
therapy. As computational power and algorithm sophis-
tication continue to advance, the potential for break-
throughs in PCa treatment grows, offering hope for more 
effective and targeted interventions in the future. Over-
all, the use of computational techniques with DEGs has 
revolutionized drug discovery by making it faster, more 
cost-effective, and more precise, thereby improving the 
development of targeted therapies and personalized 
medicine. Therefore, this study aims to computationally 
identify compounds that could be used as novel agents or 
repurposed for the treatment of PCa by exploring differ-
entially expressed genes (DEGs).

Materials and methods
Gene expression dataset
The gene expression dataset of PCa generated and pub-
lished by Chandran et  al. [17] were used for this study. 
The dataset served as the basis for the analysis and explo-
ration conducted in this study.

DEGs network analysis
The DEGs network analyses, consisting of transcription 
factor, protein-protein interaction and kinase enrich-
ments, were conducted using the eXpression2Kinases 
(X2K) Web server at https://​maaya​nlab.​cloud/​X2K/ [21]. 
The X2K Web server provided a platform to explore and 
interpret the gene expression data in the context of tran-
scriptional regulation, protein interactions, and kinase 
signalling, thereby offering valuable insights into the 
molecular mechanisms underlying the observed differen-
tially expressed genes in the context of PCa.

Ligand discovery analysis
In the ligand discovery analysis, Expression2Kinases 
(X2K) software [22] was used to determine the top 10 
drugs capable of reversing the expression of both upregu-
lated and downregulated differentially expressed genes 
[18]. The software was configured with default settings 
and human was selected as the organism of interest. The 
drug prediction module of X2K utilizes the Connectiv-
ity Map database to rank drugs based on their potential 
to induce or reverse the expression of DEGs [22]. This 
feature is particularly useful for discovering drugs that 
might modulate specific signaling pathways identified in 
the gene expression analysis.

In silico ADME/T prediction
The ligands identified in the previous steps were searched 
in the PubChem database (PubChem CIDs: 65,808; 
10,219; 7,251,185; 36,811; 5405; 16,362; 4046; 3213; and 
5566) and their SMILES representations were obtained. 
The SMILES were used for in silico ADME/T (Absorp-
tion, Distribution, Metabolism, Excretion, and Toxicity) 
prediction. Firstly, SwissADME webserver, accessible at 
www.​swiss​adme.​ch [23] was used to predict the ADME. 
Furthermore, pkCSM webserver, accessible at http://​
biosig.​unime​lb.​edu.​au/​pkcsm/ [24], was employed for 
ADMET analysis. SwissADME is a free web tool designed 
to evaluate the pharmacokinetics, drug-likeness, and 
medicinal chemistry friendliness of small molecules. 
pkCSM is a computational tool used to predict phar-
macokinetic properties and toxicity of small molecules 
in drug discovery. It employs graph-based signatures to 
model the relationships between molecular structures 
and their biological effects.

In silico target prediction
The SMILES were used for in silico target prediction 
on SwissTargetPrediction webserver (http://​www.​swiss​
targe​tpred​iction.​ch/). In the analysis, Homo sapiens was 
selected as the target organism [25]. SwissTargetPredic-
tion is an online tool designed to predict the biological 

https://maayanlab.cloud/X2K/
http://www.swissadme.ch
http://biosig.unimelb.edu.au/pkcsm/
http://biosig.unimelb.edu.au/pkcsm/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
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targets of small molecules. It utilizes a combination of 2D 
and 3D similarity measures to compare a query molecule 
against a database of known ligands and their targets. 
This approach helps identify potential protein targets for 
drug discovery and development, aiding researchers in 
understanding the mechanisms of action of compounds 
and in repurposing existing drugs​.

Molecular docking studies
The molecular docking studies were conducted following 
the methodology described by Fatoki et al. [26]. Initially, 
the three-dimensional structures of the most probable 
proteins were obtained as AlphaFold pdb format through 
the UniProt database (UniProt IDs: Q12809; P35462; 
P35228; P00533, P06241; P23415; and P11388). The 
structure ligands in SMILES were converted to mol for-
mat using ACDLab/Chemsketch software. Subsequently, 
PyMol software was utilized for the conversion of ligand 
files from .mol to .pdb format. Both the ligands and the 
protein were prepared for docking using AutoDock Tools 
(ADT) v1.5.6 [27] with default settings, and the output 
file was saved in pdbqt format. The molecular docking 
experiments were performed using the AutoDock Vina 
v1.2.3 [28, 29]. Following the docking process, the inter-
actions involved in the binding of the ligands to the tar-
get protein were analyzed and visualized using ezLigPlot 
webserver [30]. AutoDock Vina is an open-source molec-
ular docking software with improves accuracy and speed 
of docking simulations through an efficient optimization 
algorithm and a scoring function that estimates the bind-
ing affinity of ligands to their targets. This tool is widely 
utilized in computational drug discovery and structural 
biology to aid in the identification and optimization of 
potential drug candidates​.

Molecular dynamics simulation
MD simulations were conducted using Desmond v3.6, 
in a Schrödinger LLC software v2021-1 [26, 31, 32]. Des-
mond is a high-performance molecular dynamics (MD) 
simulation software developed by D. E. Shaw Research. 
It is widely used in computational chemistry and drug 
discovery due to its speed and accuracy. Briefly, the ini-
tial stage of protein and ligand complexes for molecular 
dynamics simulation were obtained from docking stud-
ies. The protein–ligand complexes were preprocessed 
using maestro’s protein preparation wizard, which also 
included optimization and minimization of complexes. 
All systems were prepared by the System Builder tool. 
Solvent Model with an orthorhombic box was selected as 
TIP3P (Transferable Intermolecular Interaction Potential 
3 Points). The Optimized Potential for Liquid Simulations 
(OPLS)-2005 force field was used in the simulation [33]. 
The models were made neutral by adding counter ions 

0.15 M NaCl to mimic the physiological conditions [34]. 
The NPT ensemble (Isothermal-Isobaric: moles (N), pres-
sure (P), and temperature (T) are conserved) with 300 K 
temperature and 1 atm pressure) was select for complete 
simulation. The models were relaxed before the simula-
tion, and full system simulation was performed for 100 ns 
with trajectories saved every 100 ps. The post-simulation 
analyses of the trajectories were done to determine the 
root-mean-square deviation (RMSD), root-mean-square 
fluctuation (RMSF), and protein-ligand interaction pro-
file. Also, prime molecular mechanics/generalized Born 
surface area (MMGBSA) was used to evaluate the bind-
ing free energy [26, 35, 36], as follows:

•	 MMGBSA ΔGbind = ΔGcomplex - ΔGprotein - ΔGligand.
•	 MMGBSA ΔGbind = ΔGCoulomb + ΔGCovalent + ΔGHbond 

+ ΔGLipo + ΔGPacking + ΔGSolvGB + ΔGvdW.

where ΔGbind is the total Prime energy, Hbond denote 
hydrogen bonding energy, Lipo is lipophilic energy, Pack-
ing represents pi-pi packing correction. SolvGB is gen-
eralized Born electrostatic solvation energy, and vdW is 
Van der Waals energy.

Results
PCa is a leading cause of cancer-related mortality among 
men worldwide, presenting a significant public health 
challenge. In this study, DEG data was integrated with 
in silico techniques to offer a promising avenue for dis-
covering new anti-PCa compounds. By focusing on genes 
that are specifically altered in PCa, we identify com-
pounds that selectively target these pathways.

A total of 79 upregulated DEGs and 110 downregu-
lated DEGs in PCa (PCa) were analysed. The results of 
gene network analyses for the upregulated genes yielded 
enriched transcription factors (POU3F2, CLOCK, 
CTNNB1, HNF4A, E2F1, CREB1, NANOG, SOX2, 
MYC and WT1), and enriched kinases (PRKG1, ERBB4, 
RNASEL, DAPK2, DDR1, NTRK2, AXL, PKN2, CDC2 
and SRPK1) as shown in Fig.  1. The results of overall 
expression network for the upregulated DEGs showed 
the enriched kinases (MAPK14, CDK1, AKT1, CDK4, 
CDC2, and DNAPK), transcription factor (E2F1, MYC, 
UBTF, TAF7, TCF3, SOX2, FOXP2, SALL4, and AR) 
while the enriched intermediate proteins include GSK3B, 
RELA, CDK2, MAPK1, PARP1, JUN, SIRT1, and RB1, as 
shown in Fig. 2. The results of gene network analyses for 
the downregulated genes, enriched transcription factors 
are CUX1, SOX2, POU5F1, AR, ESR2, ESR1, and PAX3-
FKHR, and enriched kinases are PRKG2, RPS6KA6, 
PKN1, ACVR2A, PRKG1, FRK, EPHB1, ROCK2, EPHB6, 
and ACVR2B as shown in Fig.  3 The results of overall 
expression network for the downregulated DEGs showed 
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Fig. 1  Enrichment analysis of upregulated DEGs showing (A) Transcription factor (B) protein-protein interaction and (C) kinases
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the enriched kinases (MAPK14, MAPK1, MAPK13, 
CSNK2A1, CDK1, CDK4, ERK1, ERK2, and DNAPK), 
transcription factor (STAT3, TCF3, SRF, SUZ12, NFE2L2, 
SMAD4, SOX2, GATA2 and EGR1) while the enriched 
intermediate proteins include SP1, GSK3B, RELA, JUN, 
RB1, HDAC3, SIRT1, and NCOR2 as shown in Fig. 4.

The results of ligand discovery showed the top drugs 
that could reverse upregulated genes in PCa, which are 
talampicillin, dexverapamil, homosalate, emetine, gem-
fibrozil, parthenolide, cephaeline, hesperidin, cyclohex-
imide, dobutamine, ginkgolide A, kanamycin, and 
diclofenamide; while the drugs that could reverse down-
regulated genes in PCa are: terfenadine, camptothecin, 
menadione, pimozide, mefloquine, digoxigenin, stro-
phanthidin, nitrofurantoin, felodipine, anisomycin, ellip-
ticine, trichostatin A, propofol, and trifluoperazine. The 
chemical structures of nine drug compounds selected for 
further investigation in this study are shown in Fig. 5.

The predicted absorption, distribution, metabo-
lism and excretion (ADME) or pharmacokinetics of the 
nine selected drugs indicate that all the selected nine 
have low GIA, only Pimozide and Mefloquine are not 

BBB permeants, only Emetine and Parthenolide are not 
inhibitors of cytochrome P450 (CYPs) type CYP1A2, 
CYP2C19, CYP2C9, CYP2D6, and CYP3A4. Also, only 
Parthenolide is not a substrate of p-glycoprotein, and 
only Terfenadine and Pimozide are poorly soluble, as 
shown in Table  1. Furthermore, ADMET results in 
Table 2 indicate that Parthenolide, has the highest intesti-
nal absorption followed by Ellipticine and Dexverapamil. 
Also, Parthenolide, Dobutamine and Ellipticine are not 
inhibitors of p-glycoprotein I and II. The toxicity results 
showed that only Parthenolide, Pimozide and Ellipti-
cine had AMES toxicity potential, only Terfenadine and 
Pimozide are not a potential inhibitor of hERG I and II, 
while Dexverapamil, Emetine, Parthenolide, Terfenadine, 
and Ellipticine have no potential hepatotoxicity. In the 
subsequent analyses, gemfibrozil and camptothecin were 
ignored.

The results of target prediction indicate the molecu-
lar targets which include: serotonin receptor 2a/2b/2c, 
HERG protein, adrenergic receptor alpha-1a/2a, dopa-
mine D3 receptor, nitric oxide synthase, inducible 
(iNOS), adrenergic receptor alpha-1d/beta-1, carbonic 

Fig. 2  Overall enrichment analysis network of up-regulated DEGs
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Fig. 3  Enrichment analysis of down-regulated DEGs enrichment showing (A) Transcription factor (B) protein-protein interaction and (C) kinases
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anhydrases, epidermal growth factor receptor erbB1 
(EGFR), tyrosine-protein kinases, norepinephrine trans-
porter, and C-C chemokine receptor type 5 (CCR5); these 
targets cut-across only nine drug compounds (dexvera-
pamil, emetine, parthenolide, dobutamine, terfenadine, 
pimozide, mefloquine, ellipticine and trifluoperazine), at 
a threshold of 20% probability (Table 3).

Molecular docking was conducted on selected seven 
molecular targets, and the results in Table 4, showed that 
highest binding affinity occurred between Pimozide and 
Dopamine D3 receptor (-8.035  kcal.mol−1), followed by 
Terfenadine binding to inducible nitric oxide synthase 
(-7.833  kcal.mol−1), Pimozide binding to Glycine recep-
tor subunit alpha-1 (-7.740  kcal.mol−1), and Pimozide 
binding with HERG (-7.636  kcal.mol−1). The selected 
docking poses of the ligand-protein complexes are pre-
sented in Fig. 6.

The results of molecular dynamic (MD) simulations are 
presented in Fig. 7. The results of RMSD of Terfenadine-
iNOS complex indicated RMSD of 20.00 Å (Fig.  7A), 
RMSF of iNOS showed broad fluctuation in the amino 
acid residues (Fig.  7B), and protein-ligand interactions 

(or contacts) are presented in Fig.  7C, indicate various 
amino acid residues that formed hydrogen bonds, hydro-
phobic, ionic and water bridges. The results of Ellipticine-
TOPIIα complex indicated RMSD of 13.50 Å (Fig.  7D). 
the RMSF of TOPIIα occurred maximally at both N-and 
C- terminal (Fig. 7E), and the protein-ligand interactions 
(or contacts) are presented in Fig. 7F, which indicate vari-
ous amino acid residues that formed hydrogen bonds, 
hydrophobic, ionic and water bridges.

Overall, the results of protein-ligand interactions 
validated the amino acid residues present in the dock-
ing interactions of Terfenadine-iNOS complex and 
Ellipticine-TOPIIα complex. The binding free energies 
of the two complexes were calculated using MMGBSA 
at 0 ns and 100 ns respectively and the results are shown 
in Table 5. Overall, binding energy ΔGbind (Total) at 0 ns 
was lower than that of 100 ns for both the Terfenadine-
iNOS complex (-101.707 to -103.302  kcal.mol−1) and 
Ellipticine-TOPIIα complex (-42.229 to -58.780  kcal.
mol−1). These results showed that the two complexes 
were energetically favourable during the simulation 
condition.

Fig. 4  Overall enrichment analysis network of down-regulated DEGs
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Discussion
Prostate cancer (PCa) is a complex and biologically 
diverse disease [5]. In this study, the differentially 
expressed genes (DEGs) implicated in PCa were exam-
ined. Downregulated DEGs play a significant role in the 
disease progression. Enriched kinases such as MAPK14, 
MAPK1, MAPK13, CSNK2A1, CDK1, CDK4, ERK1, 
ERK2, and DNAPK are involved in signaling path-
ways regulating cell growth, proliferation, and survival. 
Transcription factors like STAT3, TCF3, SRF, SUZ12, 
NFE2L2, SMAD4, SOX2, GATA2, and EGR1 are critical 
in controlling gene expression associated with PCa devel-
opment and progression. Intermediate proteins like SP1, 
GSK3B, RELA, JUN, RB1, HDAC3, SIRT1, and NCOR2 
modulate various cellular processes contributing to PCa 
pathogenesis. Moreover, several molecular pathways 
have been reported involved in PCa include the regula-
tion of AR activity by gene fusion events involving BMI, 

ERG, FOXA1, MAGI2, MAP3K7, MYC, NKX3.1, TP53, 
SMAD4, SOX9, and various signaling pathways [5]. 
Understanding the roles of these molecules can provide 
insights into the molecular mechanisms underlying PCa 
and potentially identify new therapeutic targets.

The X2K approach can assist in drug target discovery 
and help in unraveling drug mechanisms of action. As a 
limitation, currently the X2K method uses only protein/
DNA interactions, protein–protein interactions and 
kinase–substrate reactions, other types of data could 
be added [22]. Another limitation of the X2K method 
is the assumption of independence between regula-
tors and targets when applying the enrichment analyses 
[22]. Moreover, X2K method has been successfully used 
to investigate network analysis of DEGs associated with 
myeloproliferative disorders [37]. Connectivity Map [38] 
which utilize gene-expression signatures to connect small 
molecules, genes and disease, has been used to identify 

Fig. 5  Chemical structures of the investigated compounds
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pimozide as promising drug against cabazitaxel-resist-
ance in CRPC [39]. The ligands identified in this study 
cover a wide range of mechanisms that could potentially 
reverse gene expression changes in PCa. Talampicillin, 
dexverapamil, gemfibrozil, dobutamine, and ginkgolide A 
are known for their roles in modulating pathways related 
to cancer progression or treatment resistance. Similarly, 
drugs like parthenolide, emetine, and cycloheximide have 
been studied for their ability to inhibit cancer cell growth 
and induce apoptosis. On the other hand, drugs like 

terfenadine, camptothecin, and trichostatin A are associ-
ated with reversing downregulated genes in PCa possibly 
by affecting pathways involved in tumor suppression or 
DNA repair through the predicted protein targets, and 
associated kinases and transcription factors.

In comparison to existing PCa therapies, nine com-
pounds identified in this study have potential advan-
tages and disadvantages in term of their mechanisms of 
action, side effect profiles, and the current landscape of 
PCa treatment. Dexverapamil is known for its ability to 

Table 2  Ligand ADMET properties using pkCSM webserver

Legend: A: Dexverapamil. B: Emetine. C: Parthenolide. D: Dobutamine. E: Terfenadine. F: Pimozide. G: Mefloquine. H: Ellipticine. I: Trifluoperazine. Based on pkCSM 
ADMET predictive model [Ref: 24], a compound is said to have high Caco-2 permeability at a value of > 0.90; poor GIA at less than 30% absorption; low skin 
permeability (logKp > -2.5); VDss is low at < 0.71 L/kg (log VDss < -0.15) and high at > 2.81 L/kg (log VDss > 0.45); BBB permeant at a logBB > 0.33 and non-permeant 
at logBB < -1; CNS permeant at a logPS > -2 and non-permeant at a logPS < -3; Tetrahymena pyriformis toxicity (pIGC50) at a value > − 0.5 log µg/L is considered toxic; 
minnow toxicity (LC50) at a value < 0.5 mM (logLC50 < -0.3) is regarded as high acute toxicity; maximum recommended tolerated doses (MRTD) of ≤ 0.477 log(mg/kg/
day) is considered low, and high if > 0.477 log(mg/kg/day)

ADMET LIGANDS

Type Properties A B C D E F G H I

Absorption Water solubility (log mol/L) -5.421 -3.666 -3.161 -3.169 -4.286 -2.899 -4.874 -5.049 -4.837

Caco-2 permeability (log Papp in 10 cm/s) 0.547 0.751 1.71 0.883 1.014 0.121 1.446 1.407 1.009

Intestinal absorption (human) (% Absorbed) 92.836 91.032 97.599 86.587 89.765 84.897 85.961 95.756 90.906

Skin Permeability (log Kp) -2.763 -2.798 -3.278 -2.735 -2.735 -2.735 -2.96 -2.737 -2.73

P-glycoprotein substrate Yes Yes No Yes Yes Yes Yes Yes Yes

P-glycoprotein I inhibitor Yes Yes No No Yes Yes Yes No Yes

P-glycoprotein II inhibitor Yes Yes No No Yes Yes Yes No Yes

Distribution VDss (human) (log L/kg) 0.931 1.596 0.291 1.738 0.529 0.616 0.83 0.072 2.223

Fraction unbound (human) 0.025 0.204 0.45 0.423 0 0.185 0.193 0.136 0.041

BBB permeability (log BB) -0.647 -0.394 0.444 -0.738 0.222 0.004 0.488 0.414 0.847

CNS permeability (log PS) -2.484 -2.067 -3.007 -2.519 -1.342 0.487 -2.675 -1.209 -1.541

Metabolism CYP2D6 substrate No Yes No No Yes No No No Yes

CYP3A4 substrate Yes Yes No Yes Yes Yes Yes Yes Yes

CYP1A2 inhibitor No No No No Yes Yes Yes Yes Yes

CYP2C19 inhibitor No Yes No No Yes No No Yes Yes

CYP2C9 inhibitor No No No No No Yes No No No

CYP2D6 inhibitor Yes Yes No Yes Yes Yes No No Yes

CYP3A4 inhibitor Yes No No No No Yes No Yes Yes

Excretion Total Clearance (log ml/min/kg) 1.072 0.993 1.162 1.132 0.718 0.631 0.43 0.535 0.385

Renal OCT2 substrate Yes No Yes No No Yes Yes No No

Toxicity AMES toxicity No No Yes No No Yes No Yes No

Max. tolerated dose (human)
(log mg/kg/day)

-0.181 -0.019 0.306 0.105 0.41 0.107 -0.283 0.288 0.104

hERG I inhibitor No No No No Yes Yes No No No

hERG II inhibitor Yes Yes No Yes Yes Yes Yes No Yes

Oral Rat Acute Toxicity (LD50) (mol/kg) 2.973 2.793 2.096 2.951 2.252 2.442 2.926 2.236 2.751

Oral Rat Chronic Toxicity (LOAEL)
(log mg/kg_bw/day)

1.309 0.674 1.592 1.101 1.063 1.088 0.473 1.506 0.851

Hepatotoxicity No No No Yes No Yes Yes No Yes

Skin Sensitisation No No Yes No No No No No No

T. Pyriformis toxicity (log ug/L) 0.667 0.327 0.46 0.305 0.287 0.285 1.186 0.489 1.057

Minnow toxicity (log mM) -1.947 -0.825 1.582 2.009 0.379 2.339 0.913 -1.289 4.016
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Fig. 6  Binding interaction of A Emetine and HERG. B Parthenolide and Nitric oxide synthase, inducible. C Dobutamine and Epidermal growth factor 
receptor erbB1. D Terfenadine and inducible nitric oxide synthase. E Terfenadine and Tyrosine-protein kinase FYN. F Pimozide and HERG. G Pimozide 
and Glycine receptor subunit alpha-1. H Pimozide and Dopamine D3 receptor. I Mefloquine and HERG. J Mefloquine and Glycine receptor subunit 
alpha-1. K Ellipticine and DNA topoisomerase II alpha. L Trifluoperazine and HERG
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inhibit P-glycoprotein, which is often implicated in mul-
tidrug resistance (MDR) reversal, potentially enhanc-
ing the efficacy of chemotherapy [40]. Being a calcium 
channel blocker, it might offer cardioprotective benefits, 
potentially useful in patients with concurrent cardio-
vascular conditions. Dexverapamil exhibited improved 
potency  but failed to proceed to clinical application 
because of its  unwanted interactions with the CYP450 
enzymes leading to unfavorable pharmacokinetic pro-
files [41]. Emetine is a metabolite from the root of Car-
apichea ipecacuanha (Brot.) [42]. It is a ribosomal and 
mitochondrial protein synthesis inhibitor, as well inhib-
its the synthesis of RNA and DNA. Emetine is known to 
induce apoptosis in cancer cells by downregulation of 
anti-apoptotic and upregulation of pro-apoptotic gene 
products in various cancer cells including in PCa [43, 44]. 
It could provide antiviral and antiparasitic properties as 
additional benefits if the patient has concurrent infec-
tions. However, its has toxicity profile requires further 
investigation.

Parthenolide is a major active component of the 
medicinal plant Magnolia grandiflora and Tanace-
tum parthenium), which is conventionally used to treat 
inflammatory diseases such as fever, migraine, and 
arthritis [45]. It has multi-targets mechanism against 
cancer [46]. Parthenolide is an inhibitor of NF-κB, that 
also inhibit several cytokines, including tumor necrosis 
factor-α, RANKL, and interleukin-1β [47]. The radio-
sensitization effect of parthenolide in PCa cells is medi-
ated by nuclear factor-κB inhibition [48]. A study has 
shown that parthenolide sensitises prostate tumour 

tissue to radiotherapy while protecting healthy tissues 
[49]. It has anti-inflammatory properties, thus help to 
manage inflammation associated with cancer [46, 50]. 
However, it possesses poor water solubility and bioavail-
ability, making it difficult to deliver effective doses. There 
is more preclinical than clinical evidence, so its efficacy 
in humans is not well-established.

Dobutamine is a β1-adrenergic agonist used to sup-
port heart function, which could be beneficial for PCa 
patients with heart failure [51]. Dobutamine inhibits the 
yes-associated protein (YAP)-dependent gene transcrip-
tion, which has been observed in a number of types of 
tumors [52]. Dobutamine has been reported for signifi-
cantly inhibit proliferation, increase apoptosis, induce 
expression of caspases 3 and 9, arrest the cell cycle at the 
G2/M transition stage, and reduce migration and inva-
sion of MG-63 osteosarcoma cells in a time- and con-
centration-dependent manner, thereby [53]. Terfenadine 
is a histamine receptor antagonist like cimetidine, which 
could help with cancer symptoms such as histamine-
related inflammation or pruritus. It has been suggested 
that inhibition of histamine h3 receptor (H3R) may have 
favorable application prospects in the treatment of PCa 
[54]. A study has shown that terfenadine induces anti-
proliferative and apoptotic activities in human hormone-
refractory PCa through histamine receptor-independent 
mechanism [55]. Also, it has been suggested that terfena-
dine induces the DNA damage response in human mela-
noma cells [56].

Pimozide has antipsychotic properties which can 
manage psychiatric symptoms in cancer patients, such 

Table 4  Molecular docking binding affinity of ligand-protein interaction

Gene name (gene code, UniProt ID) - B: HERG (KCNH2, Q12809). D: Dopamine D3 receptor (DRD3, P35462). I: Nitric oxide synthase, inducible (by homology) (NOS2, 
P35228). L: Epidermal growth factor receptor erbB1 (EGFR, P00533). M: Tyrosine-protein kinase FYN (FYN, P06241). T: Glycine receptor subunit alpha-1 (GLRA1, 
P23415). V: DNA topoisomerase II alpha (TOP2A, P11388). Docking parameters: B: HERG [spacing: 1.000, npts: 126 × 126 × 126, center: -6.474 × 3.692 × -0.454]. D: 
Dopamine D3 receptor [spacing: 0.800, npts: 98 × 80 × 126, center: -8.214 × -1.817 × 7.114]. I: Nitric oxide synthase, inducible (by homology) [spacing: 0.750, npts: 
126 × 126 × 126, center: -4.707 × -0.769 × 3.509]. L: Epidermal growth factor receptor erbB1 [spacing: 0.800, npts: 126 × 126 × 126, center: -6.474 × 3.692 × -0.454]. 
M: Tyrosine-protein kinase FYN [spacing: 0.525, npts: 126 × 126 × 126, center: -4.721 × 3.182 × -0.374]. T: Glycine receptor subunit alpha-1 [spacing: 0.750, npts: 
126 × 126 × 126, center: -8.842 × 0.109 × 5.951]. V: DNA topoisomerase II alpha [spacing: 1.000, npts: 126 × 126 × 126, center: 5.135 × -1.990 × 7.409]

SN Ligands Binding Affinity ΔG (kcal.mol−1)

HERG
(AF-Q12809)

DRD3 (AF-
P35462)

NOS2
(AF-P35228)

EGFR (AF-
P00533)

FYN (AF-P06241) GLRA1, (AF-
P23415)

TOP2A 
(AF-
P11388)

1 Dexverapamil -5.924 -4.649

2 Emetine -7.044

3 Parthenolide -7.041

4 Dobutamine -5.152 -6.105 -6.640

5 Terfenadine -6.181 -7.833 -6.814

6 Pimozide -7.636 -8.035 -7.740

7 Mefloquine -7.217 -7.068

8 Ellipticine -7.396

9 Trifluoperazine -7.335 -6.537
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Fig. 7  Molecular dynamic simulation (MDS) results. A RMSD of Terfenadine and inducible nitric oxide synthase (iNOS). B RMSF of iNOS. C 
Interaction profile of the contact between Terfenadine and inducible nitric oxide synthase. D RMSD of Ellipticine and DNA topoisomerase II alpha. 
E RMSF of DNA topoisomerase II alpha. F Interaction profile of the contact between Ellipticine and DNA topoisomerase II alpha

Table 5  Prime MMGBSA binding energy of Terfenadine-iNOS complex and Ellipticine-DNA topoisomerase II alpha complex

Legend: Total: Total energy (Prime energy). Coulomb: Coulomb energy. Covalent: Covalent binding energy. Hbond: Hydrogen bonding energy. Lipo: Lipophilic energy. 
Packing: Pi-pi packing correction. Solv GB: Generalized Born electrostatic solvation energy. vdW: Van der Waals energy

Complex Simulation 
Time (ns)

MMGBSA Binding energy ΔG (kcal.mol-1)

Coulomb Covalent Hbond Lipo Packing Solv_GB vdW ΔGbind (Total)

Terfenadine-iNOS. 0 -10.657 2.512 -0.104 -56.242 -0.824 24.980 -61.371 -101.707

100 -8.908 1.585 -0.8252 -61.007 -0.714 30.745 -64.180 -103.302

Ellipticine-TOPIIα 0 -6.674 1.262 -0.265 -23.614 -0.057 16.593 -29.472 -42.229

100 -12.789 -0.059 -0.250 -26.857 -0.543 17.257 -35.537 -58.780
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as anxiety or delirium. It is evident based on research 
reports that pimozide could inhibit invasion and migra-
tion of cancer cells [57]. In mice, pimozide reduced 
the progression of PCa with increased reactive oxy-
gen species (ROS) generation and decreased superox-
ide dismutase I (SOD1) activity [57]. Pimozide has been 
identified as a promising candidate drug for cabazitaxel-
resistant CRPC, where AURKB and KIF20A were found 
as potential targets [39]. Phosphorylated STAT3 (Tyr705) 
has been identified as a biomarker of response predictive 
of sensitivity to pimozide treatment in triple-negative 
breast cancer [58]. In the context of PCa, pimozide has 
been shown to inhibit cell growth through the suppres-
sion of STAT3 activation [59]. These findings suggest that 
targeting STAT3 signaling pathway may hold therapeutic 
potential in PCa treatment.

Mefloquine is an antimalarial compound with antican-
cer potential [60]. A previous experimental study has 
shown that mefloquine at 20 µM selectively and com-
pletely abolished the cell proliferation of two human PCa 
cell lines DU145 and PC3, by hyperpolarization of mito-
chondrial membrane potential and increased production 
of ROS resulting in rapid cancer cell death through inhi-
bition of Akt phosphorylation and activated JNK, ERK 
and AMPK signaling [60–62].

Ellipticine is metabolite present in a medicinal plant 
Ochrosia elliptica labil, with mechanism of action that 
involve intercalation into DNA, inhibiting topoisomerase 
II, which is a promising mechanism for cancer treatment 
[63]. Ellipticine and its derivatives have shown activity 
against various cancer types, potentially including PCa 
[64]. However, it is hepatotoxic and has inconsistent 
absorption and metabolism which can complicate dos-
ing and limits its clinical use. Trifluoperazine is antip-
sychotic with potential anticancer effects. Some studies 
suggest it may inhibit cancer cell proliferation, induce 
apoptosis and overcomes drug resistance [65]. It has been 
reported that trifluoperazine effectively inhibited cispl-
atin-resistant metastatic bladder urothelial carcinoma 
and circumvented cisplatin resistance with concurrent 
Bcl-xL downregulation [66]. However, its neurological 
side effects such as extrapyramidal symptoms and tardive 
dyskinesia worth further investigation.

In PCa, the factors such as (i) low gastrointestinal 
absorption (GIA) can affect drug bioavailability, influ-
encing its effectiveness, (ii) Inhibitors of cytochrome 
P450 enzymes, particularly CYP1A2, CYP2C19, 
CYP2C9, CYP2D6, and CYP3A4, can alter the metab-
olism of drugs used in PCa treatment, impacting 
their pharmacokinetics and potentially therapeu-
tic outcomes. (iii) Additionally, being a substrate of 
P-glycoprotein can affect drug distribution and elimi-
nation, influencing its concentration in prostate tissue. 

Avoiding inhibitors of P-glycoprotein can help maintain 
optimal drug levels. (iv) AMES toxicity and inhibiting 
hERG I and II can minimize potential adverse effects 
on genetic material and cardiac function, respectively, 
enhancing the safety profile of the treatment regimen. 
(v) Avoiding drugs with potential hepatotoxicity is cru-
cial in PCa management to prevent liver damage, espe-
cially considering the importance of liver function in 
drug metabolism and clearance.

Currently, there are approximately 25 drug targets 
under investigation for the treatment of PCa, including 
androgen receptor (AR), AR cofactors and regulators 
(such as NCOA1, NCOR1, TNK2, and others), andro-
gen synthesis enzymes (e.g., CYP17), aurora A kinase, 
cyclin-dependent kinases (CDKs), growth factor recep-
tors (EGFR, IGF1R, FGFR, VEGFR, MET), and tyrosine 
kinase (SRC) [5]. In this study, several molecular targets 
suitable for therapeutic purposes were identified. These 
targets include the serotonin receptors, HERG protein, 
dopamine D3 receptor, inducible nitric oxide synthase 
(iNOS), Norepinephrine transporter, epidermal growth 
factor receptor erbB1 (EGFR), tyrosine-protein kinases, 
glycine receptor subunit alpha-1, and DNA topoisomer-
ase II alpha. Serotonin signaling may influence PCa 
growth and metastasis through these receptors. Target-
ing serotonin receptors could potentially modulate tumor 
behavior. HERG (Human Ether-à-go-go-Related Gene) 
encodes a potassium channel protein. Dysregulation of 
HERG channels has been implicated in cancer develop-
ment, including PCa. Targeting HERG may affect tumor 
cell proliferation and survival. Carbonic anhydrases reg-
ulate pH homeostasis in tumor microenvironments. In 
PCa, targeting carbonic anhydrases could disrupt tumor 
acidification and inhibit metastasis. Norepinephrine 
signaling contributes to PCa progression. Inhibiting the 
norepinephrine transporter may interfere with tumor cell 
proliferation and invasion. Chemokine receptors, includ-
ing CCR5, play roles in cancer cell migration and metas-
tasis. Blocking CCR5 signaling could potentially inhibit 
metastasis of PCa.

EGFR signaling is dysregulated in various cancers, 
including PCa. Inhibiting EGFR could potentially sup-
press tumor growth and invasion. Furthermore, kinase 
activities of EGFR, ephrin type-A receptor 2 (EPHA-2), 
JAK2, ABL1, and SRC were found to be increased in PCa 
based on phosphotyrosine peptide enrichment analysis 
[5, 67]. The IL6-IL6R signaling pathway, leading to activa-
tion of the JAK1-STAT3 pathway, is also involved. STAT3 
interacts with AR and facilitates recruitment of p300 to 
the AR transcriptional complex [5, 68, 69]. Extracellu-
lar growth factors such as EGF, IGF, FGF10, and others, 
can transactivate AR through engagement with receptor 
tyrosine kinases (RTKs), which in turn activate the PI3K 
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and MAPK pathways [5]. EGFR, in particular, is fre-
quently overexpressed in many cases of PCa [5, 70].

Protein kinases are enzymes that phosphorylate and 
transfer a phosphate group from ATP to specific residues 
like tyrosine, serine, or threonine. Tyrosine kinases are 
involved in various cellular processes and are often dys-
regulated in cancer. Targeting specific tyrosine kinases 
could disrupt oncogenic signaling pathways in PCa cells. 
Tyrosine kinase inhibitors (TKIs) such as Sorafenib and 
erlotinib have been developed for the treatment of vari-
ous cancers [71]. Mutations in the kinase domain of the 
epidermal growth factor receptor (EGFR) are known 
oncogenic drivers. TKIs targeting mutated EGFR have 
shown superior efficacy compared to chemotherapy in 
treating patients with EGFR-positive cancer and have 
become the standard of care [72]. The MAP kinase signal-
ing pathway has been identified as significant in the met-
astatic process, and its involvement in androgen receptor 
signaling has been previously described [73]. Muscarinic 
receptors consist of five distinct subtypes (M1-M5), and 
their localization studies suggest that multiple subtypes 
(M1, M3, M4, and M5) are expressed in pancreatic islets, 
-cells, or -cell derived tumor cell lines [74].

Moreover, topoisomerase II alpha (Topo IIα) was iden-
tified as one of the protein targets. Inhibition of Topo 
IIα has been suggested as a potential therapeutic option 
against CRPC, which has link with androgen independ-
ence in cellular growth [75–77]. Topo IIα is known to 
promote tumor aggressiveness by inducing chromosomal 
rearrangements of genes that contribute to a more inva-
sive phenotype in PCa cells. It also enhances the androgen 
receptor signaling pathway by facilitating the transcrip-
tion of androgen-responsive genes. Additionally, Topo 
IIα expression is significantly higher in cabazitaxel-resist-
ant CRPC cells compared to cabazitaxel-sensitive CRPC 
cells, suggesting that inhibiting Topo IIα could be a viable 
therapeutic strategy for CRPC [78, 79]. Also, in this study 
we identified inducible nitric oxide synthase (iNOS) as a 
key protein target. Nitric oxide (NO), which plays com-
plex roles in cancer, including PCa. NO has been impli-
cated in androgen resistance, with studies suggesting its 
involvement in androgen receptor transcriptional sup-
pression and direct androgen receptor inhibition through 
iNOS and endothelial nitric oxide synthase (eNOS), 
respectively [80, 81]. High iNOS expression in the tumor 
epithelium of the prostate has been associated with lethal 
disease, and epigenetic changes and polymorphisms in 
the iNOS gene are correlated with an increased risk of 
PCa development, suggesting the involvement of iNOS 
in prostate carcinogenesis [82]. Thus, inhibition of iNOS 
and eNOS may contribute to anti-cancer effects.

In cancer therapy, drug combination approach has been 
found to overcome the problems related to monotherapy 

and several studies have already demonstrated the supe-
riority of combined therapies compared to monotherapy 
[83]. Combinations of small molecular inhibitors against 
specific DNA repair proteins and cytotoxic drugs have 
been suggested as future approach to achieve success in 
cancer treatment [84]. The identified drugs could have 
potential interactions with existing PCa treatments. For 
synergistic effects; Dexverapamil could enhance the 
efficacy of chemotherapeutic agents like docetaxel or 
mitoxantrone by inhibiting P-glycoprotein and reversing 
multidrug resistance (MDR). Also, combining Dexvera-
pamil with androgen deprivation therapy (ADT) might 
improve outcomes by sensitizing cancer cells to hormone 
depletion. Emetine’s apoptosis-inducing effects might be 
synergistic with drugs like bicalutamide, which also pro-
mote apoptosis in PCa cells. It could be combined with 
chemotherapeutics to enhance cytotoxic effects through 
protein synthesis inhibition and apoptosis induction. 
Parthenolide’s inhibition of NF-κB could be enhanced 
by combining it with other NF-κB pathway inhibitors, 
potentially leading to reduced cancer cell proliferation 
and survival. Its anti-inflammatory properties might 
work synergistically with drugs that also target inflamma-
tion, reducing tumor-promoting inflammation.

Although, dobutamine is not a direct anticancer agent, 
dobutamine could be used to manage cardiac side effects 
of existing cancer therapies, allowing for higher tolerable 
doses of those therapies.  Terfenadine itself poses risks, 
but exploring safer histamine receptor antagonists in 
combination with standard treatments might help man-
age cancer-related inflammation and histamine-mediated 
effects. Pimozide’s ability to inhibit cancer cell migra-
tion and invasion could be combined with agents that 
target metastatic pathways, providing a multi-pronged 
approach to preventing metastasis. Combining pimoz-
ide with other psychotropic drugs might help manage 
psychological symptoms in PCa patients. Since meflo-
quine disrupts lysosomal function, it could be combined 
with autophagy inhibitors to enhance cancer cell death. 
Mefloquine might sensitize cancer cells to chemotherapy, 
potentially lowering required doses and reducing side 
effects. Combining ellipticine with other DNA-damag-
ing agents like platinum-based drugs could enhance the 
overall DNA damage, leading to increased cancer cell 
death. Synergistic effects might be explored with other 
topoisomerase inhibitors to enhance anti-cancer effi-
cacy. Trifluoperazine’s inhibition of calmodulin could 
be combined with other agents affecting calcium signal-
ing pathways to disrupt cancer cell growth [85]. Using it 
alongside other antipsychotics might help manage neuro-
logical symptoms in cancer patients.

Molecular docking is a computational technique used 
to predict the preferred orientation of one molecule (the 
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ligand) when bound to another molecule (the target, 
typically a protein) to form a stable complex [18]. Bind-
ing affinity have biological implications on drug efficacy 
and potency. Low binding affinity indicates strong bind-
ing between the ligand and the target, suggesting that the 
ligand is likely to be a potent inhibitor or activator of the 
target [26]. The lower (more negative) the binding energy, 
the stronger the interaction. High binding energy sug-
gests weak interactions, implying that the ligand is less 
likely to be effective in modulating the target’s activity. 
Moreover, docking provides hypotheses that need to be 
confirmed through biochemical assays, crystallography, 
or other biophysical methods. Discrepancies between 
predicted and observed binding affinities highlight the 
limitations of current docking methods and the need for 
continuous refinement.

MD simulation helps simulate the movement of atoms 
and molecules over time, providing insights into protein 
dynamics and behavior, and articulate on the stability of 
the protein–ligand complex in a simulated condition [26, 
86]. In MD simulations, the stability and binding affin-
ity of a protein-ligand complex are often assessed using 
various metrics which include Root Mean Square Devia-
tion (RMSD), Root Mean Square Fluctuation (RMSF), 
and Molecular Mechanics Generalized Born Surface 
Area (MMGBSA) are commonly employed. The RMSD 
results indicate that Terfenadine-iNOS complex was less 
stable than Ellipticine-DNA topoisomerase II alpha com-
plex. RMSD of about 2.0 Å indicates that the proteins 
had undergone relatively small conformational changes 
and were, thus, stable during the simulation [87]. RMSD 
measures the average deviation of a set of atomic posi-
tions (typically the backbone or all heavy atoms of the 
protein) from a reference structure over time. A lower 
RMSD indicates that the structure of the protein (or pro-
tein-ligand complex) remains closer to the initial or ref-
erence structure, suggesting greater stability. Monitoring 
RMSD over time helps in identifying significant confor-
mational changes. Large deviations may indicate flexibil-
ity or instability. RMSF measures the average fluctuation 
of each atom or residue around its average position over 
the course of the simulation. RMSF provides insights into 
the flexibility of individual residues or regions within the 
protein. Higher RMSF values indicate greater flexibil-
ity. Regions with low RMSF in the protein-ligand com-
plex might correspond to stable interaction sites, while 
regions with high RMSF might suggest flexible or less 
stable binding regions.

MMGBSA (Molecular Mechanics Generalized Born 
Surface Area) generates a lot of energy properties which 
report energies for the ligand, receptor, and complex 
structures as well as energy differences relating to strain 
and binding, and are broken down into contributions 

from various terms in the energy expression [26, 36]. The 
binding free energy (total) clearly showed that the sta-
bility of the complexes in physiological condition, and 
they were found to be reasonably stable. MMGBSA is a 
method to estimate the free energy of binding between 
a protein and a ligand by combining molecular mechan-
ics energies with solvation terms (Generalized Born and 
Surface Area terms). MMGBSA calculates the free energy 
of binding, ΔGbind, which is an indicator of binding affin-
ity. A more negative ΔGbind suggests a stronger binding 
affinity. MMGBSA can be decomposed to analyze the 
contribution of individual residues to the binding free 
energy, identifying key residues involved in the binding 
process. By combining these analyses, a comprehensive 
understanding of the stability and binding affinity of the 
protein-ligand complex could be estimated.

Implications of the study for personalized medicine
The implications of this study for personalized medi-
cine in PCa include (1) Targeted therapy approach which 
involve identifying specific biomarkers in patients that 
predict responsiveness to these compounds, allowing 
for personalized treatment plans [88]. Also, the use of 
genetic profiling to tailor treatments based on individual 
tumor characteristics, improving efficacy and minimiz-
ing side effects. (2) Combination therapy which involve 
development of personalized combination therapies 
based on the patient’s unique genetic and molecular pro-
file, enhancing treatment outcomes [89, 90]. (3) Drug 
repurposing which involve reapplication of existing drugs 
like the identified compounds can expedite the develop-
ment of new treatments, leveraging existing safety data 
and potentially reducing costs and time to clinical use 
[19, 91].

Limitations of the study and future perspective
The findings are primarily based on computational mod-
els and predictions, although there are few empirical data 
to confirm the efficacy and safety of these compounds 
in cancer treatment. Computational predictions may 
overestimate the therapeutic potential due to the com-
plexity of biological systems that are not fully captured 
by models. Also, potential off-target effects and toxici-
ties identified computationally may not fully predict the 
in vivo outcomes, leading to unforeseen adverse effects. 
Addressing limitations in future research, there will be 
need to conduct in vitro and in vivo studies on PCa cell 
lines to assess the compounds’ efficacy and elaborate the 
mechanisms of action, as well as to evaluate the phar-
macokinetics, pharmacodynamics, and toxicity profiles. 
There is need to initiate phase I clinical trials to assess 
safety, dosing, and initial efficacy in humans, as well 
as design trials that investigate combinations of these 
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compounds with existing therapies to explore synergistic 
effects. Furthermore, advanced computational tools such 
as machine learning and artificial intelligence (AI), could 
be used to refine predictions and identify potential syner-
gistic combinations with greater accuracy.

Conclusion
This study has unravelled from the DEGs of PCa patient, 
the potential drugs for repurposing pharmacological 
indication. The identified compounds (Dexverapamil, 
Emetine, Parthenolide, Dobutamine, Terfenadine, Pimoz-
ide, Mefloquine, Ellipticine, and Trifluoperazine) present 
promising mechanisms of action involving modulation 
of HERG, adrenergic receptor Alpha-1a, dopamine D3 
receptor, epidermal growth factor receptor erbB1, C-C 
chemokine receptor type 5, muscarinic acetylcholine 
receptors, glycine receptor subunit alpha-1 and others, 
which could potentially enhance PCa treatment. Combi-
natorial therapy involving these drugs or in addition with 
existing standard PCa therapies, could provide synergis-
tic effects by reversing multidrug resistance, inducing 
apoptosis, inhibiting metastasis, and modulating critical 
signaling pathways. However, their off-target effects and 
toxicity profiles necessitate careful consideration and fur-
ther investigation. Experimental validation and clinical 
trials are crucial next steps to confirm their therapeutic 
potential and safety. Integrating these findings into per-
sonalized medicine approaches could revolutionize PCa 
treatment, providing more effective and tailored thera-
peutic options for patients. Future research should focus 
on translating these insights into clinical practice, ulti-
mately improving patient outcomes and quality of life.
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