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Abstract 

Background  This study delves into the complex interplay among prostate-specific antigen, alkaline phosphatase, 
and the temporal dynamics of tumor shrinkage in prostate cancer. By investigating the longitudinal trajectories 
and time-to-prostate cancer tumor shrinkage, we aim to untangle the intricate patterns of these biomarkers. This 
understanding is pivotal for gaining profound insights into the multifaceted aspects of prostate cancer progression. 
The joint model approach serves as a comprehensive framework, facilitating the elucidation of intricate interactions 
among these pivotal elements within the context of prostate cancer .

Methods  A new joint model under a shared parameters strategy is proposed for mixed bivariate longitudinal 
biomarkers and event time data, for obtaining accurate estimates in the presence of missing covariate data. The 
primary innovation of our model resides in its effective management of covariates with missing observations. Built 
upon established frameworks, our joint model extends its capabilities by integrating mixed longitudinal responses 
and accounting for missingness in covariates, thus confronting this particular challenge. We posit that these enhance-
ments bolster the model’s utility and dependability in real-world contexts characterized by prevalent missing data. 
The main objective of this research is to provide a model-based approach to get full information from prostate cancer 
data collected with patients’ baseline characteristics ( Age, body mass index ( BMI ), GleasonScore , Grade , and Drug ) 
and two longitudinal endogenous covariates ( Platelets and Bilirubin).

Results  The results reveal a clear association between prostate-specific antigen and alkaline phosphatase biomarkers 
in the context of time-to-prostate cancer tumor shrinkage. This underscores the interconnected dynamics of these 
key indicators in gauging disease progression.

Conclusions  The analysis of the prostate cancer dataset, incorporating a joint evaluation of mixed longitudinal 
prostate-specific antigen and alkaline phosphatase biomarkers alongside tumor status, has provided valuable 
insights into disease progression. The results demonstrate the effectiveness of the proposed joint model, as evi-
denced by accurate estimates. The shared variables associated with both longitudinal biomarkers and event 
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times consistently deviate from zero, highlighting the robustness and reliability of the model in capturing the com-
plex dynamics of prostate cancer progression. This approach holds promise for enhancing our understanding 
and predictive capabilities in the clinical assessment of prostate cancer.

Keywords  Prostate cancer, Biomarker, Prostate-specific antigen, Alkaline phosphatase, Joint model

Background
Longitudinal data from biomarkers are usually collected 
in cancer studies, with the primary outcome variable 
that consists of time until the pre-specified event occurs, 
e.g., time to disease progression, recurrence of cancer, or 
death. Joint models are common to simultaneously ana-
lyze longitudinal and event time outcomes by address-
ing complex issues of informative dropouts, informative 
censoring, missingness, and association structure [1, 
2]. One perspective is to directly introduce longitudinal 
measurements into Cox’s model as time-varying covari-
ates. However, the risk of bias increases in this approach 
if observations are measured with error or if there exists 
intra-individual variability [3].

Two further types of joint modeling approaches have 
been employed in previous studies: One approach uti-
lizes the factorization of two outcomes as the product 
of marginal and conditional distributions, and the sec-
ond approach utilizes random effects to account for the 
association between outcomes [4, 5]. When multiple 
outcomes are collected on individuals, the joint model is 
extended to allow for the correlation structure between 
different outcomes. More than one similar longitudinal 
with more than one event time outcome has been ana-
lyzed using the usual joint modeling strategy [6].

Simultaneous analysis of multivariate longitudinal and 
event time outcomes becomes complex to execute when 
different types of longitudinal outcomes are included 
in the study [7, 8]. Random-effects modeling strategy is 
the most frequently applied joint modeling approach, 
which is well established to analyze continuous and dis-
crete longitudinal data implying an association structure 
between repeated measures on individuals [9].

Linear mixed-effects models commonly assume longi-
tudinal processes [10, 11] and the proportional hazards 
model is specified for an event time process [12]. Joint 
models of multiple outcome processes are connected 
with parameters using various associated structures such 
as time-dependent slopes, interaction and lagged effects, 
cumulative effects, and random-effects parameterization 
[13].

The presence of missing data leads to a high complex-
ity in longitudinal data due to different follow-up time 
points. Deletion of missingness has threats related to 
loss of information and reduction in precise estimates, 
which produces misleading inferences. The validity of 

accommodating incompleteness during data analysis 
depends upon the missingness mechanism. According 
to Rubin [14], it is based on missingness-completely-at-
random (MCAR), missingness-at-random (MAR), and 
missingness-not-at-random (MNAR) taxonomy, by mak-
ing assumptions related to observed and unobserved 
information. MCAR probability does not depend on 
unobserved or observed information, MAR probability 
depends upon observed information but it is independ-
ent of unobserved information, while the occurrence of 
MNAR purely depends upon observed and unobserved 
information.

A single missing value in the data set is replaced with 
a calculated mean or median or the last observed value 
is used to fill space of unobserved value. This technique 
produces biased estimates in the case of MAR [15]. Han-
dling missing data in statistical methodology with a joint 
evaluation of longitudinal and event time responses pro-
vides substantial effects regarding inferences. Selection, 
pattern-mixture, and shared-parameter models (SPM) 
are three well-established joint modeling frameworks 
that are used to apply different factorizations for the joint 
distribution of outcomes and missing data processes [16]. 
The SPM approach mostly applies with conditionally 
independent assumption between outcomes and miss-
ingness based on random- effects [17, 18].

Our work aims to develop a joint model for continu-
ous and binary longitudinal responses and an event time 
outcome with missing covariates. Shared random effects 
are used to build a joint model for mixed longitudinal 
outcomes with an-event time outcome; by assuming the 
existence of sharing effects between longitudinal mixed 
models and an-event time model. Longitudinal and event 
time outcomes are conditionally independent of shared 
parameters and covariates. The ignorability condition ful-
fills if missingness in time-dependent covariates relates to 
observed observations but not to unobserved data. A dis-
tributional assumption for incomplete observed covari-
ates is inevitable for likelihood inference, while no such 
assumption is needed for covariates without missingness 
[19]. We propose a joint model for prostate-specific anti-
gen ( PSA ) and alkaline phosphatase ( ALP ) biomarkers, 
and time-to-tumor shrinkage status data collected on 
prostate cancer patients. The proposed model is based on 
patients’ baseline characteristics as covariates with time-
dependent endogenous covariates.
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Methods
Notation and definitions
The methodology is based on formulation of a 
joint model for bivariate longitudinal responses, 
one continuous and normally distributed and the 
other one binary. Let y1ij and y2ij be the continu-
ous and binary components of jth outcome at time 
point tij where i = 1,2, 3, . . . ., n. Let yi = (y⊤1i, y

⊤
2i)

⊤ 
be the bivariate longitudinal outcome vector for 
i , such that yhi = (yhi1, yhi2, yhi3, . . . ., yhij)

⊤ where 
h = 1,2, j = 1,2, . . . ., nhi is an nhi column vector for hth 
longitudinal responses for subject i.

For bivariate responses, the generalized linear mixed 
effects model takes the form as,

Where, gh(.) denotes bivariate link functions for 
mixed data types. Xhiand βh represent the nhi × ph 
design matrix of covariate values of fixed effects ph 
effects. In the same way, Zhi and uhi denote a nhi × q1 
design matrix of covariates of qh dimensional vector of 
normally distributed random effects with mean vector 
0 and covariance-matrix Σ . It is assumed that elements 
of yhi are independent conditional on uhi.

The generalized linear mixed effects model (1) is writ-
ten using an identity link for continuous response and a 
logit link for binary response [20], respectively as,

It is assumed that u1i follows a normal distribu-
tion with zero mean vector and variance-covariance 
matrix Σ , and u2i is proportional to u1i . It is written 

as u2i = A0u1i , where A0 denotes a diagonal matrix of 
unknown constants.

True event time Ti and censoring time Ci are 
defined for individual i , using observed event time 
T ∗
i = min(Ti, Ci). Censoring status is represented 

with ∆i = I(Ti ≤ Ci) , by assuming non-informative 

(1)E
(

yhi|uhi
)

= gh(Xhiβh + Zhiuhi), h = 1,2

(2)E
(

y1i|u1i
)

= X1iβ1 + Z1iu1i,

(3)logit
(

Pr
(

y2i = 1
)

|u2i
)

= X2iβ2 + Z2iu2i.

censoring criteria [21]. It is assumed that event time for 
ith individual is associated with continuous and binary 
longitudinal responses via shared random effects u1i 
and u2i . Specifically, the hazard function for ith individ-
ual at time Ti is given by a proportional model, given as,

where h0(Ti) is the baseline hazard function, assumed 
to be parametric or left unspecified. X3i is a p3 dimen-
sional vector of covariates with regression coefficients 
β3.

Here U3i , shared parameters are used to associate the 
random effects of longitudinal outcomes with the ran-
dom effect of event time outcome.

The shared random effects joint model becomes,

where, Ψ⊤
1 , andΨ⊤

2 are associated parameters and u3i is 
a normally distributed frailty term. Longitudinal outcome 
vector yi and an-event time outcome T are conditionally 
independent on covariates and random-effects vector u . 
Let’s combine observed data as,

The joint distribution of observed data based on condi-
tional independence assumption is given for individuals 
as,

where θ denotes the parameter vector and f(・) denotes 
the probability density function. The log-likelihood for 
the observed data is expressed by,

If associated parameters Ψ = (Ψ⊤
1 ,Ψ⊤

2 )
⊤
= (0,0) are 

zero, there exists no association among the three out-
come processes, in this case, joint modeling is not neces-
sary and separate models can be used. In Bayesian 
inference, Markov-Chain-Monte-Carlo methods includ-
ing Gibbs sampler and Metropolis-Hastings algorithm 

(4)hi(t|x3i,U3i) = h0(t)exp(x
⊤
3iβ3 +U3i),

(5)U3i = Ψ⊤
1 u1i + Ψ⊤

2 u2i + u3i,

(6)
yhi tij ,X tij ,Z tij ,T ∗

i ,∆i , i = 1,2, 3, . . . ., n, j = 1,2, 3, . . . ., nhi , h = 1,2 .

(7)
f
(

yi ,T
∗
i ,∆i|ui; θ

)

=f
(

y1i|u1i;β1, σ
2
ǫ1

)

xf (
(

y2i|u2i;β2
)

xf
(

T ∗
i ,∆i|ui;β3,Ψ , σ 2

3

)

,

(8)�N

i=1
log

�

ui

�n1i

i=1
[

1
�

2πσ 2
ǫ

exp{−
1

2σ 2
ǫ1

�

y1ij − x1ijβ1 − z1iju1i
�2
}]×

�n2i

j=1





�

1

1+ exp
�

−x2ijβ2 − z2iju2i
�

�y1ij
�

exp
�

−x2ijβ2 − z2iju2i
�

1+ exp
�

−x2ijβ2 − z2iju2i
�

�1−y2ij




× [h0
�

T ∗
i

�

exp{xT3iβ3 +Ui}]
∆iexp{−

� T∗
i

0

h0(s)exp{x
T
3iβ3 +Ui}ds} × f (ui|Σ)dui .
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implemented to draw samples iteratively from condi-
tional posterior distribution [22]. The conditional poste-
rior distribution is written with joint prior distribution 
p
(

θ ′y1i , θ
′
y2i
, θ ′T∗

i
, θ ′∆i

, θ ′ui

)

 of all parameters.
Let xmis

i
 be a vector of time-dependent missing covari-

ates included in the generalized linear model, which is 
given as,

the term 
∏

iǫxmis
i

∏n
i=1p

(

xij|θij , τ
)

 be added to the condi-
tional posterior distribution.

Let xmis
ij  be missing covariates and xobsij  be observed 

covariates, and 
{(

Rij , yij , x
obs
ij , xmis

ij

)}

 be full data, where 
Rij is missing data indicator, which takes value 0 or 1, 
based on observe or missing observations, and θ is 
parameter of missingness. Rij is independent of missing 
observations xmis

ij  but may depend on observed values 
( yij , xobsij  ). We assume random-effects association for two 
heterogeneous longitudinal processes, this parameteriza-
tion is more meaningful for our case, where random-
intercept and random-slope are assumed for longitudinal 
sub-models. Both frequentist and Bayesian statisticians 
have agreed on the fact of inaccurate estimates in case of 
not incorporating missing covariates in data analysis [19]. 
In a frequentist context, many parameters of the likeli-
hood function are not identifiable due to missing covari-
ates, Bayesian analysis provides a solution to this problem 
by appropriately choosing proper prior distributions, 
using informative priors. Informative priors add informa-
tion about unknown parameters when based on true 
available historical data. If no previous knowledge is 
available, non-informative prior distribution and Gibbs 
sampling are used to combine with the Metropolis-Hast-
ings algorithm under full conditional distribution of each 
model parameter [23]. We implement Bayesian thinking 
for parameter inferences, using the Gibbs sampling algo-
rithm with the help of ‘OpenBUGS’ [24]. Weak-informa-
tive priors are chosen, and fixed effects parameters are 
assumed to be distributed normally with large variance 
components. For variances of error terms inverse-gamma 
prior distributions and for covariances of random-effects 
inverse-Wishart distributions are applied as priors. The 
implementation code is available upon request from the 
corresponding author.

Application to mixed longitudinal (PSA, ALP) 
and a time‑to‑tumor status prostate cancer study
Prostate cancer being the major cause of cancer deaths 
in men has increased the disease burden in terms of 
diagnosis and progression to assess the effectiveness of 

(9)
p
(

xij |θij , τ
)

= exp
{

α−1
i (τ )

(

xθij − b
(

θij
))

+ c(x, τ )
}

, xij ∈ xmis
i ;

treatment. In the era from 1988 to the mid-1990s, PSA 
was the only serum marker for prostate cancer and it is 
still used for diagnosis, measuring treatment efficacy, 
and recurrence of prostate cancer [25, 26]. ALP is one 
of the older biomarkers for investigating and monitoring 
prostate cancer. Furthermore, it is a reliable indicator of 
bone metastases [27, 28]. Various authors have proved 
an increase in the clinical effectiveness of simultaneous 
measurement of PSA and ALP in prostate cancer patients 
[29, 30].

Our motivation for joint modeling of longitudinal 
and event time outcomes arises from a prostate cancer 
dataset collected from one of the most renowned pub-
lic hospitals in Pakistan. This dataset includes patients 
who underwent various treatments and were followed 
to monitor PSA and ALP measurements until tumor 
shrinkage or censoring occurred. To study the effects of 
biomarkers on event time, we jointly modeled longitudi-
nal PSA and ALP biomarkers along with tumor shrinkage 
outcomes.

The study included patients diagnosed with prostate 
cancer as their primary disease, who provided blood 
samples during follow-up visits spaced 28 to 30 days 
apart. The demographic characteristics of the study sam-
ple showed an age distribution ranging from 50 to 85 
years, with a mean age of 68 years. Clinically, the patients 
varied in disease stage, with a significant number in 
advanced stages (stages III and IV), indicating a high-risk 
population.

Treatment histories of the patients included a mix of 
therapeutic approaches: surgery (prostatectomy), radia-
tion therapy, hormone therapy (androgen deprivation 
therapy), and combinations thereof. This diversity in 
treatment history reflects the standard care practices 
for managing advanced prostate cancer and provides 
a comprehensive view of the patient population under 
investigation.

To remove variations caused by different scales of data, 
we standardized all continuous variables. Specifically, 
each variable was transformed by subtracting its mean 
and dividing by its standard deviation, resulting in varia-
bles with a mean of zero and a standard deviation of one. 
This standardization ensures that all continuous variables 
contribute equally to the model and prevents those with 
larger scales from dominating the analysis.

Additional preprocessing steps included addressing 
missing data through multiple imputations to mitigate 
bias from incomplete datasets. Outliers were identified 
and assessed, with extreme values either transformed or 
excluded based on their influence on the overall analysis. 
Categorical variables were encoded using one-hot encod-
ing to convert them into a format suitable for modeling.
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Results
To jointly model three outcomes the model is specified 
as,

To model longitudinal log(PSA) a linear-mixed-effects 
model with random intercept and slope is specified as,

The random-intercept u10 and random-slope u11 are 
assumed to follow a bivariate normal distribution with 
means 0 and variance-covariance components σ 2

u 10, σ
2
u 11, 

and σu10u11 . In addition, the random error term 
ǫ1ij ∼ N (0, σ 2

ǫ1) is independent of random effects.
Binary longitudinal outcome ( ALP ) considers a logistic 

mixed-effects regression model as,

where,

The third outcome is time to tumor shrinkage. A 
Weibull model is proposed such that random- effects are 
shared among three sub-models,

Considering three sub-models under SPM, random-
effects terms are defined as follows:

It is to be assumed that ǫij∼N (0, σ 2
ǫ ), ǫij′s indi-

cates error components. The regression coefficients 
β11, . . . .,β19,β21, . . . .,β29, and β31, . . . .,β34 are fixed 
effects unknown parameters. In these sub-models, Agei 
is the baseline age of patients in years, Plateletsi counts 

(10)y1ij = η1i
(

tij
)

+U1i

(

tij
)

+ ǫij1.

log
(

PSAij

)

= β11 + β12tij + β13Agei + β14Plateletsi + β15BMIi+

β16Bilirubini + β17GleasonScorei + β18Gradei + β19Drugi

(11)+u10i + u11itij + ǫ1(t).

(12)logit
(

P
(

y2ij = 1
))

= η2i
(

tij
)

+U2i

(

tij
)

,

(13)
= β21 + β22sij + β23Agei + β24Plateletsi + β25BMIi+

β26Bilirubini + β27GleasonScorei + β28Gradei

+ β29Drugi + Ψ1u10i + Ψ2u11itij .

(14)Ti ∼ η3i +U3i,

(15)
η3i =exp(β31 + β32GleasonScorei + β33Gradei

+ β34Drugi + Ψ3u10i + Ψ4u11i + u3i).

(16)U1i

(

tij
)

= u10i + u11itij ,

(17)U2i

(

tij
)

= Ψ1u10i + Ψ2u11itij ,

(18)U3i = Ψ3u10i + Ψ4u11i + u3i,

are recorded over time, BMIi of patients are recorded 
at entry-level, and Bilirubini measurements are taken at 
each time of measurement.GleasonScorei, Gradei, and 
Drugi are binary covariates.

Estimation and inference of our proposed joint model 
are based on conditional independence assumptions. For 
our analysis, the two longitudinal biomarkers constitute 
the joint model by adding additional variance-covariance 
parameters of the random effects. It is also assumed 

Table 1  Parameter estimates (Est.), standard deviation (S.D.) and 
95% credible interval (CI) of PCa data, by applying our proposed 
joint model

Parameter Est. S.D. 95% CI

log(PSA) biomarker
  Intercept 0.900 0.100 0.800, 1.100

  Obstime -7.000 0.100 -7.200, -6.800

  Age 0.200 0.000 0.200, 0.300

  Platelets 0.200 0.000 0.200, 0.300

  Body mass index (BMI) -0.100 0.000 -0.200, -0.100

  Bilirubin 0.100 0.000 0.000, 0.200

  Gleason Score 1.900 1.300 0.400, 3.500

  Grade -0.900 1.300 -2.500, 0.800

  Drug 0.400 0.200 0.100, 0.700

  σ 2
ε

1.100 0.000 1.100, 1.200

  σ 2
u1

0.400 0.000 0.400, 0.500

ALP biomarker
  Intercept 1.900 0.300 1.300, 2.600

  Obstime 1.500 0.800 0.200, 3.200

  Age -0.300 0.100 -0.500, -0.100

  Platelets 0.500 0.100 0.300, 0.800

  Body mass index (BMI) -0.300 0.100 -0.500, -0.200

  Bilirubin 4.800 0.500 3.900, 5.700

  Gleason Score 4.000 1.600 1.600, 7.200

  Grade -2.500 1.700 -5.700, 0.600

  Drug -1.100 0.600 -2.500, 0.200

  σ 2
u2

0.600 0.500 0.100, 1.700

  σu1u2 0.000 0.100 -0.200, 0.100

Time-to-tumor shrinkage
  Intercept -19.400 0.400 -20.300, -18.600

  Gleason Score 0.200 0.100 0.100, 0.300

  Grade -0.400 0.100 -0.600, -0.100

  Drug 0.200 0.100 0.100. 0.400

  σ 2
u

0.300 0.200 0.100, 0.700 

  r 3.500 0.100 3.300, 3.600

  tau 0.900 0.000 0.800, 0.900

  �1 -0.100 0.200 -0.400, 0.200

  �2 -10.100 5.600 -23.600, -3.100

  �3 -0.500 0.400 -1.100, 0.100 

  �4 -0.600 0.300 -1.400, -0.100
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that given the observed history, the right censoring and 
observation time of visits are independent of the true 
event times and future biomarkers’ measurements.

The parameter estimates (Est.), standard deviation 
(S.D.), and 95% credible intervals (CI) for the prostate 
cancer dataset were obtained using the proposed joint 
model, focusing on longitudinal PSA and ALP bio-
markers and time-to-tumor shrinkage outcomes. These 
results, summarized in Table  1, provide insights into 
the magnitude and direction of associations between 
covariates and prostate cancer progression.

Combined analysis of this study aimed to identify the 
association structure among the three models (linear 
mixed-effects for log(PSA) , logistic mixed-effects for 
ALP , and event of interest “shrinkage of tumor”), which 
is directly assessed from the associated parameters 
mentioned in Table 1.

The positive intercepts for both PSA (0.900) and ALP 
(1.900) biomarkers suggest baseline levels before con-
sidering other covariates. PSA levels decrease signifi-
cantly over time (Est. = -7.000), while ALP levels show 
an increase (Est. = 1.500), reflecting different temporal 
dynamics. Higher platelet counts are associated with 
increases in both PSA (Est. = 0.200) and ALP (Est. = 
0.500). Elevated bilirubin shows a slight increase in PSA 
(Est. = 0.100) but a substantial increase in ALP (Est. = 
4.800). Higher GleasonScores significantly increase both 
PSA (Est. = 1.900) and ALP (Est. = 4.000) levels. Drug 
treatment is associated with increases in PSA (Est. = 
0.400) and decreases in ALP (Est. = -1.100).

The first associated parameter estimated value is -0.100 
which suggests a slight negative effect, although not 
statistically significant, with the 95% CI ranging from 
− 0.400 to 0.200, indicating uncertainty about the true 
effect size. The second associated parameter indicates a 
more substantial effect compared to the first associated 
parameter with an estimated value of -10.100, which 
suggests a significant negative impact, with the 95% CI 
ranging from − 23.600 to -3.100, indicating a wide range 
of possible effect sizes. The estimated value of the third 
associated parameterΨ3 is -0.500 which suggests a nega-
tive effect, but with a wide 95% CI (-1.100, 0.100), which 
indicates uncertainty about the true effect size and direc-
tion. The estimated value of Ψ4 is -0.600 which suggests a 
moderate negative impact, with a relatively narrow 95% 
CI from − 1.400 to -0.100, providing more confidence in 
the estimated effect size.

Results indicate that PSA is a good biomarker in the 
diagnosis of prostate cancer, but after treatment, it shows 
different trends for different treatments. PSA values point 
out successful or unsuccessful prostate cancer treat-
ment. An increased level of ALP in prostate cancer may 
be an indicator of advanced cancer, as it means cancer is 

spreading to bones and tissues. That situation is alarm-
ing and emphasizes physicians to make decisions regard-
ing advanced therapies and sometimes combinations of 
androgen deprivation therapy with prostatectomy. The 
association between PSA and ALP emphasizes taking 
into account these two biomarkers simultaneously to get 
insights into prostate cancer progression.

Discussion
We developed a joint model for PSA and ALP biomarkers 
and a time-to-tumor shrinkage variable and applied this 
model to analyze the prostate cancer dataset to find any 
potential association between biomarkers and tumor sta-
tus accounting for patients’ baseline characteristics and 
endogenous Platelets and Bilirubincovariates. We applied 
a joint modeling approach using parametric models for 
the longitudinal biomarkers, and Cox’s proportional haz-
ards model for time-to-tumor shrinkage. We proposed a 
joint model by employing a Bayesian framework, includ-
ing posterior estimates, CI, and DIC model selection 
criteria. Results from the fitting model indicate that PSA 
and ALP biomarkers jointly contribute significantly to 
prostate cancer tumor shrinkage. Prior distributions are 
chosen taking inspiration from Choi et al. [23].

Results depict the existence of associations among 
the different outcomes, so separate models may provide 
inconsistent estimates. Efficiency gain by employing a 
joint model as compared to separate models for mixed 
types of longitudinal (continuous ( PSA ) and binary 
( ALP )) outcomes, which are strongly associated with 
each other, means these outcome processes are depend-
ent. We focus on parametric Cox’s model to analyze 
right-censored event time data by applying Weibull dis-
tribution for Cox’s model. Joint numerical analysis of 
heterogeneous data is very difficult and computationally 
challenging, complexity arises due to the existence of 
missingness in time-dependent covariates ( Platelets and 
Bilirubin ). Researchers usually apply list-wise deletion or 
imputation techniques to handle missing data, which has 
shortcomings of not providing complete information. In 
this regard, we provide a novel contribution by formulat-
ing a joint model for mixed types of responses, incorpo-
rating missingness in time-dependent covariates. More 
importantly, we provide insights into the role of associa-
tion parameters in joint modeling, very little literature is 
available on this line of investigation.

It is recommended that prostate cancer patients should 
be assessed for PSA observations during the first three 
months after treatment, in some cases PSA measurements 
become undetectable by the first month after prostatec-
tomy. PSA alone is not an adequate biomarker for prostate 
cancer progression [31], ALP is another good biomarker 
that is correlated with PSA . Correlation of both biomarkers 
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confirmed that prostate cancer patients should observed 
for PSA and ALP simultaneously after treatment to con-
firm treatment effectiveness on tumor shrinkage.

Finally, we utilized shared random effects to character-
ize the relationship between longitudinal biomarkers. A 
potential shortcoming of the shared random effects joint 
modeling approach is that the structure of random effects 
for longitudinal biomarkers is limited. Other joint model 
formulations are available as an alternative to shared 
random effects like pattern mixture and, selection mod-
eling approaches, those are employed and results can be 
compared.

Joint modeling of longitudinal and event time has pre-
viously been applied to get insights into different dis-
eases, the novelty of this research is that we employed 
a joint model for two prostate cancer longitudinal bio-
markers ( PSA and ALP ), and time to tumor shrinkage. 
This research aims to provide insight into prostate cancer 
progression by monitoring PSA and ALP for multivariate 
covariates until tumor status reaches a satisfactory level 
according to physicians’ directives. The joint modeling 
approach is an improvement over traditional separate 
longitudinal and event time models. This study illustrates 
the usefulness of simultaneous modeling for analyz-
ing the prostate cancer dataset, but the approach is also 
applicable to a wide variety of diseases, where multiple 
mixed types of longitudinal responses may have an asso-
ciation with event time response.

SPMs assume that random effects follow distributions 
such as normal, gamma, or t-distribution to capture indi-
vidual-specific characteristics in longitudinal outcomes. 
Departures from these assumptions can introduce bias 
into estimates. Error terms in these models often assume 
Gaussian or skewed distributions like gamma or log-
normal [32]. Accurate modeling of within-individual 
correlations, such as autoregressive or compound sym-
metry structures, is essential to avoid bias. Longitudi-
nal outcome relationships with time can be modeled 
using parametric or non-parametric approaches, affect-
ing trend interpretation and prediction accuracy. While 
these assumptions simplify modeling and estimation, 
violations can lead to bias, necessitating sensitivity analy-
ses for robustness. Limitations of these models include 
requirements for large sample sizes, computational chal-
lenges, and potential difficulties in interpretation, with 
sensitivity analyses playing a crucial role in identifying 
sources of bias and enhancing understanding.

In the future, this joint model can be extended to incor-
porate additional biomarkers and clinical variables to 
provide a more comprehensive understanding of prostate 
cancer progression and treatment response. In addition, 
the inclusion of genetic markers or imaging data could 
enhance the predictive accuracy of the model.

Advanced machine learning techniques can also be 
employed within the joint modeling framework. Tech-
niques such as deep learning could capture complex, 
non-linear relationships between biomarkers and clinical 
outcomes can potentially lead to more accurate and per-
sonalized predictions. Additionally, our future research 
plan is to investigate the impact of different imputation 
methods for missing data, including multiple imputation 
and machine learning-based approaches to enhance the 
robustness of the findings.
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