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Abstract 

Background In recent years, Genome‑Wide Association Studies (GWAS) has identified risk variants related to com‑
plex diseases, but most genetic variants have less impact on phenotypes. To solve the above problems, methods 
that can use variants with low genetic effects, such as genetic risk score (GRS), have been developed to predict 
disease risk.

Methods As the GRS model with the most incredible prediction power for complex diseases has not been deter‑
mined, our study used simulation data and prostate cancer data to explore the disease prediction power of three GRS 
models, including the simple count genetic risk score (SC‑GRS), the direct logistic regression genetic risk score (DL‑
GRS), and the explained variance weighted GRS based on directed logistic regression (EVDL‑GRS).

Results and Conclusions We used 26 SNPs to establish GRS models to predict the risk of biochemical recurrence 
(BCR) after radical prostatectomy. Combining clinical variables such as age at diagnosis, body mass index, prostate‑
specific antigen, Gleason score, pathologic T stage, and surgical margin and GRS models has better predictive power 
for BCR. The results of simulation data (statistical power = 0.707) and prostate cancer data (area under curve = 0.8462) 
show that DL‑GRS has the best prediction performance. The rs455192 was the most relevant locus for BCR 
(p = 2.496 ×  10–6) in our study.
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Introduction
In recent years, Genome-Wide Association Studies 
(GWAS) have identified risk genetic factors associated 
with complex diseases. However, in terms of genetic 
analysis, for large-scale data, single nucleotide polymor-
phism (SNP) is still challenging for clinical application 
of complex diseases. At the same time, as a single SNP 
has little impact on the phenotypes of complex diseases 
[1], methods that can better use little impact genetic vari-
ation, such as the Genetic Risk Score (GRS), have been 
developed to integrate the risk alleles of selected SNPs 
into the overall risk score to predict complex diseases 
[2–4].
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The published GRS models, simple count GRS (SC-
GRS), direct logistic regression GRS (DL-GRS), and 
explained variance weighted GRS based on directed 
logistic regression (EVDL-GRS) have been widely used 
to evaluate the association between genetic factors and 
complex diseases [5]. The advantage of the simple count 
GRS is that the calculation is simple and easy to under-
stand and is most suitable when the effect of SNPs can-
not be stably estimated. As this method assumes that 
all SNPs have the same impact on the disease, which is 
almost impossible in reality, it is rarely used in the estab-
lishment of prediction models On the other hand, DL-
GRS assumes that SNPs with greater odds ratio have 
a greater impact on diseases, thus, compared with the 
simple count GRS, the hypothesis of DL-GRS is more 
reasonable, and it is most suitable when the odds ratio 
of SNPs cannot be accurately estimated through exter-
nal research. Its disadvantage is that its power to pre-
dict the external population could be better. The method 
assumes that both the odds ratio and the minimum allele 
frequency (MAF) are the critical factors affecting the dis-
ease; however, as it relies on existing data, it also has the 
disadvantage of poor power in predicting the external 
population. As each of the three GRSs has its own advan-
tages and disadvantages, the model with the most incred-
ible prediction power is still unknown.

There were several past GWAS related to prostate can-
cer [6–12]. Approximately 30% of patients with prostate 
cancer have experienced biochemical recurrence (BCR) 
within ten years after resection [13], and the critical pre-
dictors of BCR include prostate-specific antigen (PSA), 
the Gleason score, and the pathological stage. However, 
some studies have found that the prediction accuracy 
of these factors is limited by the following factors: false 
positive results may be obtained in screening with PSA, 
which may lead to overdiagnosis and over-treatment [14]. 
Even if the Gleason score of different patients is the same, 
the clinical prognosis will be significantly different [15], 
as the pathological stage cannot provide long-term infor-
mation regarding BCR [16]. Due to the limitations of the 
above predictors and because few studies have explored 
the use of genetic markers to predict postoperative BCR 
in Asian populations [17], this study mainly analyzed the 
genes or loci associated with the BCR of patients with 
prostate cancer, to reduce the risk of BCR. In addition, 
the prostate-GRS models have rarely been developed.

As the GRS model with the most incredible prediction 
power for complex diseases has not been determined, 
our study used simulation data and prostate cancer data 
to explore disease prediction power of three GRS models. 
This study hypothesized that different GRS models may 
have different discrimination accuracy in predicting the 
risk of BCR. In addition, clinical gene models that include 

clinical variables and GRSs may be the better tool to pre-
dict BCR; therefore, this study used simulation and real 
data for hypothesis verification. The results of simulation 
data and prostate cancer data show that logistic regres-
sion GRS has the best prediction power.

Methods
Genetic risk score models
As a single SNP has little effect on the phenotype of com-
plex diseases, GRS is used to integrate the risk alleles of 
the selected SNPs into the overall risk score to predict 
complex diseases. The following three GRSs were used in 
this study to assess the association between genetics and 
complex diseases:

Simple count GRS (SC‑GRS)
Assume that a SNP is a base pair C and variant T, and C 
is a risk allele; because it does not have a risk allele, geno-
type TT is marked as 0; genotypes CT or TC are marked 
as 1, as they have risk alleles; genotype CC is marked as 
2. The SC−GRS =

∑
k

i=1
SNPi , where k is the number of 

SNPs and SNPi is the number of risk alleles. This method 
is the simplest, as it assumes that all SNPs have the same 
effect on the disease. Thus, only the numbers of SNPs 
with risk alleles are calculated [1, 5, 18].

Logistic regression GRS (DL‑GRS)
The DL− GRS =

k

i=1
βiSNPi , where k is the number 

of SNPs, SNPi is the number of risk alleles, and βi is the 
coefficient of logistic regression. In contrast to SC-GRS, 
this method considers that SNPs have varied impacts on 
the disease. Thus, the logistic regression coefficient is 
taken as the weight and put into the model for calcula-
tion [1, 5, 19].

Explained variance weighted GRS based on logistic 
regression (EVDL‑GRS)
The EVDL−GRS =

∑
k

i=1
WEi

SNP
i
 , where WEi

= βi√
2MAFi(1−MAFi) , k is the number of SNPs, SNPi is 

the number of risk alleles, βi is the coefficient of logistic 
regression and MAFi is the MAF of the ith SNP. The risk 
of SNPs and the MAF are both critical factors for dis-
eases; therefore, this method includes both factors in the 
model [1, 5, 20].

Single nucleotide polymorphisms (SNPs) are critical 
factors in assessing disease risk due to their influence on 
genetic variability and disease susceptibility. The signifi-
cance of SNPs is often characterized by their odds ratios 
(OR) and minor allele frequencies (MAF). Studies have 
shown that SNPs can significantly impact disease risk, 
with OR measuring the strength of association between 
a particular SNP and disease occurrence. For exam-
ple, Barreiro LB et  al. (2008) demonstrated that natural 
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selection has driven population differentiation in modern 
humans through SNPs, highlighting their role in disease 
susceptibility [21]. Additionally, research on diabetes 
risk among Middle Eastern populations emphasized the 
importance of SNPs’ OR and MAF in understanding 
genetic predispositions to the disease [22] . Further, a 
study on idiopathic pulmonary fibrosis (IPF) in a Mexi-
can cohort illustrated how specific SNP-SNP interactions 
can alter disease risk, underscoring the complex nature 
of genetic influences as assessed by OR and MAF [23] . 
Collectively, these studies underscore the importance of 
SNPs in genetic research, particularly in their capacity to 
elucidate the genetic underpinnings of disease risk.

Therefore, in this study, we utilized the SC-GRS, which 
assumes equal effect sizes for all SNPs, followed by the 
DL-GRS, which incorporates odds ratios. Lastly, we 
employed the EVDL-GRS, which takes into account both 
odds ratios and minor allele frequencies.

Simulation design
This study used SeqSIMLA (version: 2.9.1) [24] to gener-
ate simulation data, a simulation sequence and pheno-
type tool. The reference sequence files provided on the 
website were generated through simulation and param-
eter settings as based on the Asian population in the 1000 
Genomes Project.

Simulation parameter settings for prevalence, odds 
ratio, and case–control ratio were meticulously selected 
to enhance the robustness of our study. The rationale 
behind these settings is detailed as follows:

Prevalence
Prevalence is the proportion of the total population with 
a particular disease at a specific time. This study aims to 
explore the predictive ability of genetic risk scores for 
complex diseases. Therefore, we set the prevalence at 
11%, 20%, and 30%, following the guidelines of Che and 
Motsinger-Reif (2012) [25].

Odds Ratio
According to previous simulation studies [26], the minor 
allele frequency (MAF) of single nucleotide polymor-
phisms (SNPs) varies with different odds ratios. If the 
odds ratio is set at 3, the MAF of SNPs will be less than 
0.005; for an odds ratio of 2, the MAF will be less than 
0.01; for an odds ratio of 1.5, the MAF ranges between 
0.01 and 0.05; and for an odds ratio of 1.2, the MAF 
ranges between 0.05 and 0.1. SNPs with a MAF less than 
0.01 are considered rare variants. Given that both com-
mon and rare variants can influence disease risk, we set 
the simulated odds ratios {1, 1.2, 1.5, 1.7, 2, 2.4} to inves-
tigate the contributions of both common and rare vari-
ants to complex diseases.

Case–Control Ratio
The ratio of cases to controls is critical to study design. 
Commonly used ratios are 1:2, 1:3, or 1:4, which enhance 
statistical power. Although statistical power increases 
with a larger ratio, it plateaus when the ratio exceeds 4 
[27]. For this study, we utilize prostate cancer data and 
simulate two datasets: one with a case–control ratio 
of 1:1, reflecting the actual prostate cancer data, and 
another with a ratio of 1:4 to achieve enhanced statisti-
cal power. Therefore, we set the simulated case–control 
ratios to 1:1 and 1:4.

The genetic data of 36 different disease models were 
generated by combining the above three parameter fac-
tors, and 1000 simulation datasets were generated by 
each model. Under the additive genetic model, the 
association between the selected SNPs and the risk of 
complex diseases was evaluated by logistic regression 
analysis, and the odds ratios (OR) of SNPs were analyzed. 
We compared the GRS of the case group and that of the 
control group to identify significant differences by Wil-
coxon rank-sum test.

Ethics approval and consent to participate
The cross-sectional study method was used to com-
pare the discrimination between different GRSs. The 
subjects were patients diagnosed with prostate cancer 
and underwent radical prostatectomy from 1995 to 
2009. The genotype data were sequenced by Axiom™ 
Genome-Wide CHB 1 Array Plate. Patients with pros-
tate cancer were enrolled in the study, and the PSA was 
used to determine whether there was BCR. Patients in 
the case group were defined as patients with prostate 
cancer and BCR; patients in the control group were 
defined as patients with prostate cancer but without 
BCR, and those with genotype or missing questionnaire 
data were excluded. This study was approved by the 
institutional review board of Kaohsiung Medical Uni-
versity Hospital (KMU HIRB-2013132). All participants 
signed written consent forms before conducting the 
questionnaire survey and sample collection. The pri-
mary data of the subjects and the important predictors 
of BCR were collected by questionnaire. All patients 
provided written informed consent prior to the study 
enrolment. The genetic data has been de-identification 
measures to address potential privacy concerns related 
to genetic data handling, ensuring that privacy issues 
are adequately resolved. Additionally, the data will be 
used exclusively for this study, and upon its comple-
tion, the data will be destroyed to ensure its security. 
The patient inclusion and exclusion criteria have been 
described previously [28]. Detailed clinicopathological 
information was obtained from the patient’s medical 
records.
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Data analysis
The 189 patients with prostate cancer who underwent 
radical prostatectomy were collected from 1995 to 
2009. In terms of genotype data, 14,269,821 SNPs were 
obtained after gene sequencing, and then, after delet-
ing the subjects without genotype data and exclud-
ing the SNPs that did not meet the quality control 
threshold (i.e., minor allele frequency < 0.01, genotype 
call rates < 0.95, and departure from Hardy–Weinberg 
equilibrium (i.e., p-value < 10 − 4)), 185 subjects and 
7,283,541 SNPs remained.

Prostate cancer databases were analyzed primarily 
by establishing two genetic models. The detailed pro-
cess is described below and illustrated in the flowchart 
(Fig. 1).

First Model
The first model used threefold cross-validation (three-
fold CV) to divide the data into training and testing sets 

randomly. An additive logistic regression model was 
employed to analyze the SNPs with BCR as the pheno-
type, and Tag SNPs with P < 0.0001 were selected for sub-
sequent analysis.

Second Model (Final Model)
In the second model, SNPs were selected from the Tag 
SNPs identified in the threefold CV by using a joint set. 
The SNPs with the most significant impact were retained 
through stepwise regression analysis and included in the 
training and testing sets of the threefold CV to form the 
final model. Under the additive genetic model, the asso-
ciations between the selected SNPs and the risk of BCR 
were evaluated using logistic regression analysis, and the 
odds ratios of the SNPs were determined. A total of 76 
SNPs (21 SNPs, 28 SNPs, and 27 SNPs) were selected 
from the Tag SNPs in the threefold CV using the joint set 
approach, and SNPs with P < 0.05 were retained through 
stepwise regression analysis.

Fig. 1 Flowchart of the prostate cancer analyses performed
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To investigate the BCR status of prostate cancer 
patients after radical prostatectomy, the GRSs were 
divided into four groups (Q1: < 25% percentile, Q2: 
25–50% percentile, Q3: 50–75% percentile, Q4: ≥ 75% 
percentile). The various variables, such as prostate-
specific antigen, Gleason score, pathological stage, and 
PSA were adjusted into the Cox proportional-hazards 
model as a clinical model. The other model added clini-
cal variables and gene variables, namely, GRS, as the 
clinical gene model, and the hazard ratios of the two 
Cox proportional-hazards models were compared. The 
age at diagnosis, body mass index, months without BCR 
after surgery, prostate-specific antigen, and the Glea-
son score of the subjects were analyzed. Independent 
t-testing was used for continuous variables conforming 
to a normal distribution, while the Wilcoxon  rank-sum 
test was used for continuous variables with not doing to 
normal distribution. The continuous variables are pre-
sented as mean ± standard deviation, interquartile range 
(IQR), and range. The chi-square test was used for cat-
egory variables, which are presented as both number and 
percentage.

We employed sensitivity analyses to evaluate the 
robustness of the GRS models across various patient 
subgroups. Specifically, we conducted three different 
sensitivity analyses within the context of prostate cancer 
analysis:

1. Excluding cases with PSA levels below the first quar-
tile (Q1).

2. Excluding cases with PSA levels above the third quar-
tile (Q3).

3. Randomly excluding 25% of the cases.

All data were analyzed using SAS 9.4 (SAS Inc.; Cary, 
NC, USA) and Plink 2.0 [29].

Results
Simulation data
We generated a total of 36 different disease models, and 
each model generated 1000 simulation data (Supple-
mentary Table  S1). After quality control, 10 SNPs with 
P < 0.05 were selected and put into SC-GRS, DL-GRS, 
and EVDL-GRS to calculate the power of testing and 
Type I Errors.

When the prevalence is 0.11, the DL-GRS has the 
most incredible statistical power of (Power = 0.606), 
followed by EVDL-GRS (Power = 0.591), while the SC-
GRS (Power = 0.467) has the lowest statistical power. 
When the prevalence is 0.2, the DL-GRS has the most 
significant statistical power (Power = 0.647), followed 
by EVDL-GRS (Power = 0.635), while the SC-GRS 
(Power = 0.528) has the lowest statistical power. When 

the prevalence is 0.3, the DL-GRS has the most sig-
nificant statistical power (Power = 0.707), followed 
by EVDL-GRS (Power = 0.690), while the SC-GRS 
(Power = 0.589) has the lowest statistical power. In the 
case of a fixed odds ratio, the statistical powers of SC-
GRS, DL-GRS, and EVDL-GRS will increase with the 
rise of prevalence. In addition, when the prevalence is 
fixed, the statistical power of all of the 3 GRS models 
will increase with the odds ratio (Fig.  2 (A)). In either 
case, compared with the case group = 1000 and control 
group = 4000, if the case group = 2000 and the control 
group = 2500, when all the SNPs are put into the SC-
GRS, DL-GRS, and EVDL-GRS for calculation, the sta-
tistical power is higher (Fig. 2 (A) and Fig. 2 (B)).

The Type I Error of SC-GRS (Type I Error = 0.043) is 
best controlled, followed by that of EVDL-GRS (Type I 
Error = 0.055), while the Type I Error of DL-GRS (Type 
I Error = 0.057) is the highest. Under the condition of a 
fixed odds ratio, the Type I Error of SC-GRS, DL-GRS, 
and EVDL-GRS will all increase with the rise of preva-
lence; when the prevalence is fixed, the Type I Error of 
DL-GRS is the highest, followed by EVDL-GRS and 
SC-GRS (Supplementary Table  S2). Compared with the 
case group = 1000 and control group = 4000, if the case 
group = 2000 and the control group = 2500, when all the 
SNPs are put into the SC-GRS, DL-GRS, and EVDL-GRS 
for calculation, the Type I Error is higher (Supplementary 
Table S2).

Prostate cancer
Table  1 describes the basic demographic and clinical 
variables of prostate cancer patients, with BCR as the 
phenotype. Among the 185 patients with prostate can-
cer, 95 (51.35%) had no BCR, and 90 (48.65%) had BCR. 
For patients with BCR, the PSA (p < 0.001), Gleason score 
(p = 0.043), severity of the pathological stage (p = 0.001), 
and number of patients with positive surgical margin 
(p = 0.004) were all greater than those of patients with-
out BCR. In comparison, the number of months without 
BCR (p < 0.001) was lower than that of patients without 
BCR, and there was significant difference. There were no 
significant differences in age at diagnosis, height, weight, 
body mass index, or lymph node involvement (p > 0.05) 
(Table 1).

3‑fold CV
Prostate cancer databases were analyzed mainly by estab-
lishing two models. The first used threefold cross-val-
idation (threefold CV) to randomly divide the data into 
Training Sets and the Testing Set. The additive logistic 
regression model was used to analyze the SNPs with BCR 
as the phenotype, and the Tag SNPs were selected from 
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84, 130, and 67 SNPs with P < 0.0001, respectively. Finally, 
21, 28, and 27 SNPs were included in the Training Set 
and Testing Set for subsequent analysis (Supplementary 
Table  S3). Detailed information, including effect sizes 

for the 21, 28, and 27 SNPs, is shown in Supplementary 
Table  S3. In the model building, 76 SNPs (21 + 28 + 27 
SNPs) were selected from Tag SNPs in threefold CV 
by way of joint set, and the SNPs with most significant 

Fig. 2 Results of the power in our simulation study under (A) case:control = 1000:4000, and (B) case:control = 2000:2500
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impact were retained by stepwise regression analysis and 
put into the Training Set and Testing Set of threefold CV 
as the final model. A total of 26 Tag SNPs was included in 
the final model for subsequent analysis.

Three analysis results were obtained by threefold CV 
analysis: 21 to 28 SNPs were selected each time (Sup-
plementary Table S3) for SC-GRS, DL-GRS, and EVDL-
GRS, and then, grouped by quartile (Q1, Q2, Q3, Q4), 
and the differences between the four groups were 
observed. Regarding the no-BCR proportion of the three 
GRSs among the four groups in the threefold CV, the 
proportions of all three GRSs in Q1 were 100% in the 
Training Set; the higher the score, the more patients with 
BCR, and the more they are prone to recurrence. This 
trend was consistent in the Testing Set (Supplementary 
Table S4).

The Supplementary Table S5 shows the AUC ranges of 
the Training Sets, as obtained by predicting BCR through 
SC-GRS, DL-GRS, and EVDL-GRS, which are 0.9878–
0.9968, 0.9919–0.9979, and 0.9909–0.9966, respectively; 
the AUC ranges of the Testing Set are 0.6975–0.7592, 
0.7672–0.8462, and 0.7672–0.8495, respectively. The 
AUC range of the Training Set that explored the clini-
cal variables, such as age at diagnosis, PSA, Gleason 
score, pathologic T stage, surgical margin, BMI, and 
lymph node involvement, is 0.7172–0.7710, while that 

of the Testing Set is 0.7892–0.8244. The AUC ranges of 
the Training Set that explored both SC-GRS, DL-GRS, 
and EVDL-GRS and clinic variables are 0.9919–0.9989, 
0.9956–1.0000, 0.9951–0.9989, while the AUC ranges of 
the Testing Set are 0.8366–0.8739, 0.8955–0.9163, and 
0.8998–0.9241, respectively. Moreover, the calibration 
plots of the training and testing sets by threefold CV 
analysis for predicting BCR under different models are 
shown in the Supplementary Table S10.

The multivariate Cox proportional hazard model 
includes clinical variables, such as age at diagnosis, body 
mass index, PSA, Gleason score, pathologic T stage, and 
surgical margin. After adjustment of the clinic variables, 
the results show significant factors in SC-GRS, DL-GRS, 
and EVDL-GRS (p < 0.05) (Supplementary Table S6).

Final model
After the tag SNPs in the threefold CV were selected 
using joint sets, the most significant SNPs were retained 
by stepwise regression analysis and put into the Training 
Set and Testing Set of the threefold CV as the final model 
(Fig. 1).

Regarding the 26 SNPs with the most significant influ-
ence on BCR, the odds ratio of SNPs to BCR was 0.2748 
(95% C.I.: 0.1580–0.4675) to 3.321 times (95% C.I.: 
1.7560–6.2830). The rs455192 was the most relevant 

Table 1 Clinicopathologic characteristics of the study population

Variables All (n = 185) BCR P‑value

No (n = 95) Yes (n = 90)

Age at diagnosis, yr 65.47 ± 6.36 (Range = 34, IQR = 9) 64.83 ± 6.60 (Range = 34, IQR = 9) 66.14 ± 6.06 (Range = 25, IQR = 9) 0.159

height, cm 166.26 ± 5.84 (Range = 30.12, 
IQR = 8.17)

166.70 ± 5.59 (Range = 24.92, 
IQR = 8.17)

165.80 ± 6.09 (Range = 30.12, 
IQR = 9.61)

0.32

weight, kg 67.72 ± 8.31 (Range = 43.11, IQR = 11) 68.29 ± 8.09 (Range = 39.40, IQR = 10) 67.11 ± 8.53 (Range = 38.11, 
IQR = 12.6)

0.335

BMI (kg/m2) 24.50 ± 2.78 (Range = 13.14, 
IQR = 3.45)

24.58 ± 2.67 (Range = 12.26, 
IQR = 3.69)

24.41 ± 2.90 (Range = 13.14, 
IQR = 3.48)

0.681

PSA at diagnosis, ng/ml 17.65 ± 17.50 (Range = 98.43, 
IQR = 14.45)

13.63 ± 14.90 (Range = 96.23, 
IQR = 8.35)

21.89 ± 19.06 (Range = 96.84, 
IQR = 20.44)

 < 0.001

Gleason score
 2–7 158 (85.41) 86 (90.53) 72 (80.00)

 8–10 27 (14.59) 9 (9.47) 18 (20.00) 0.043

Pathologic T stage
 T1‑2 132 (71.35) 78 (82.11) 54 (60.00)

  > T3 53 (25.65) 17 (17.89) 36 (40.00) 0.001

Surgical margin
 Negative 108 (58.38) 65 (68.42) 43 (47.78)

 Positive 77 (41.62) 30 (31.58) 47 (52.22) 0.004

Lymph node involvement
 Negative 181 (97.84) 95 (100.00) 86 (95.56)

 Positive 4 (2.16) 0 (0.00) 4 (4.44) 0.054
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locus for BCR (p = 2.496 ×  10–6) (Table 2). When 26 SNPs 
were included in the Training Set, the no-BCR propor-
tion of three GRS in Q1 was 100%; the higher the score, 
the more patients with BCR, and the more likely they 
were to recur, and this trend was consistent in the Testing 
Set (Supplementary Table S7).

The AUC range of the Training Set that explored the 
clinical variables, such as age at diagnosis, PSA, Glea-
son score, pathologic T stage, surgical margin, BMI, and 
lymph node involvement, is 0.7020–0.7592, while that of 
the Testing Set is 0.7836–0.8000 (Table 3). Table 3 shows 
the AUC ranges of the Training Sets, as obtained by pre-
dicting BCR through SC-GRS, DL-GRS, and EVDL-GRS 
in the final genetic model (26 SNPs), which are 0.9979–
0.9980, 0.9976–0.9989, and 0.9977–0.9992, respectively; 
the AUC ranges of the Testing Set are 0.9860–0.9979, 
0.9999–0.9999, and 0.9958–0.9999, respectively. The 
AUC ranges of the Training and Testing Set that explored 
SC-GRS, DL-GRS, and EVDL-GRS and clinic variables 
are all 0.9999.

Supplementary Table  S8 constructs four multivariate 
Cox proportional hazard models for the Training Set and 
Testing Set of the final model. These four models contain 
and use clinical variables, such as age at diagnosis, body 
mass index, PSA, Gleason score, pathologic T stage, and 
surgical margin. After adjustment of the clinic variables, 
the results show that SC-GRS, DL-GRS, and EVDL-GRS 
were significant factors in both the Training Set and Test-
ing Set (p < 0.05).

In the sensitivity analyses, the results indicated that 
the best outcomes were observed when 25% of the cases 
were randomly excluded. In contrast, excluding cases 
with PSA levels below Q1 resulted in the least favora-
ble outcomes, with the AUC decreasing from 0.9976 to 
0.9557(the third CV fold). The sensitivity analyses dem-
onstrate that the GRS models are robust across different 
patient subgroups. Detailed results are presented in Sup-
plementary Table S9.

Table 2 The final genetic model by logistic regression analysis

SNP chromosome Gene GRCh37 Risk allele OR (95%C.I.) P

rs10893363 11 PKNOX2 [30] 125,165,779 A 0.4420(0.2877,0.6791) 1.94E‑04

rs10910023 1 2,791,143 T 2.1340(1.3720,3.3190) 7.73E‑04

rs1126232 5 2,565,001 A 0.3414(0.2124,0.5488) 9.11E‑06

rs114309234 3 79,820,723 T 2.0160(1.3010,3.1240) 1.71E‑03

rs1157173 4 136,424,005 A 0.4077(0.2587,0.6424) 1.10E‑04

rs12055887 7 GTF2IRD1 [31] 73,989,385 G 0.3950(0.2385,0.6541) 3.06E‑04

rs12205723 6 PLEKHG1 [32] 150,996,756 G 2.2130(1.4060,3.4830) 5.94E‑04

rs12615937 2 180,276,164 G 0.2878(0.1496,0.5539) 1.93E‑04

rs1325340 13 DACH1 [33] 72,439,407 T 1.9670(1.2850,3.0100) 1.84E‑03

rs146162203 2 95,705,097 C 1.7140(1.1220,2.6180) 1.27E‑02

rs16872714 5 4,048,841 C 2.8520(1.7630,4.6140) 1.95E‑05

rs17110462 1 SSBP3 [34] 54,821,382 C 0.4510(0.2719,0.7483) 2.05E‑03

rs1972538 14 COQ6 [35] 74,422,843 C 0.4441(0.2939,0.6711) 1.16E‑04

rs2012791 20 PLCB4 [36] 9,134,107 T 2.1650(1.2890,3.6370) 3.51E‑03

rs2221490 5 40,641,763 C 2.3270(1.4950,3.6210) 1.81E‑04

rs28641058 1 232,424,623 T 0.5698(0.3638,0.8924) 1.40E‑02

rs34160974 9 MAMDC2 [37], 
MAMDC2-AS1 [38]

72,781,196 C 0.4070(0.2452,0.6757) 5.10E‑04

rs34195741 3 147,351,456 C 0.5340(0.3482,0.8191) 4.05E‑03

rs4074645 3 MAP3K13 [39] 185,110,306 G 3.3210(1.7560,6.2830) 2.24E‑04

rs455192 17 9,670,373 C 0.2718(0.1580,0.4675) 2.50E‑06

rs4850564 2 LOC105376755 195,780,804 T 2.6420(1.4000,4.9860) 2.72E‑03

rs60256305 20 46,542,553 T 0.3871(0.2210,0.6781) 9.06E‑04

rs72642748 13 91,265,212 C 2.3420(1.4790,3.7100) 2.87E‑04

rs72918154 18 ZBTB7C [40] 45,563,418 C 2.5670(1.5540,4.2380) 2.30E‑04

rs76446227 6 SMOC2 [41] 169,054,760 G 1.8330(1.1750,2.8600) 7.61E‑03

rs7985583 13 112,618,602 A 2.5470(1.4790,4.3870) 7.49E‑04
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Discussion
This study used simulation data and prostate cancer data 
to compare the power of SC-GRS, DL-GRS, and EVDL-
GRS to predict complex diseases, and took the statistical 
power or AUC, whichever was the higher, as the optimal 
risk prediction model.

The results of simulation data and prostate cancer data 
found that, compared with SC-GRS and EVDL-GRS, the 
best model for predicting BCR in patients with prostate 
cancer is DL-GRS. GRS has been considered a standard 
method to evaluate the association between genetics and 
complex diseases and solve the weak genetic effect of 
SNP on phenotypes.

Our simulation data show that the higher the preva-
lence, the greater the statistical power; when the odds 
ratio is higher, the statistical power also has an upward 

trend. Compared with the case group = 2000 and the con-
trol group = 2500, the statistical power is lower when the 
case group = 1000 and the control group = 4000, and the 
three GRS have the same results, among which the sta-
tistical power of DL-GRS is the greatest. The higher the 
prevalence, the higher the Type I Error; compared with 
the case group = 2000 and the control group = 2500, the 
Type I Error is lower when the case group = 1000 and 
the control group = 4000, and the three GRS have the 
same results, among which the Type I Error of DL-GRS 
is the greatest. Apart from prevalence, odds ratio, and 
case: control ratio, the variables affecting the results of 
the three GRS also include the MAF, as shown in Sup-
plementary Figure S1. This study selected the best model 
from 36 disease models for further supplementary expla-
nation; that is, the control odds ratio is 1.2 or 2.4 when 
the case group = 2000, the control group = 2500, and 

Table 3 The AUC ranges of the training and testing sets by 3‑folds CV analysis for predicting BCR under clinical, genetic, and 
clinical + genetic models in the final model

a Clinical model: the prediction model with clinical variables including age at diagnosis, PSA, Gleason score, pathologic T stage, surgical margin, BMI, and lymph node 
involvement; Genetic model: the prediction model with genetic variables according to Genetic Risk Score Models; Clinical + Genetic model: the prediction model with 
both clinical and genetic variables

Prediction Modela Genetic Risk Score 
Models

Training set (AUC) Testing set (AUC)

First‑fold (26 SNP) Clinical model SC‑GRS 0.7592 0.7924

Genetic model 0.9979 0.9860

Clinical + Genetic model 0.9999 0.9999

Clinical model DL‑GRS 0.7592 0.7924

Genetic model 0.9980 0.9999

Clinical + Genetic model 0.9999 0.9999

Clinical model EV_DL‑GRS 0.7592 0.7924

Genetic model 0.9977 0.9999

Clinical + Genetic model 0.9999 0.9999

Second‑fold (26 SNP) Clinical model SC‑GRS 0.7395 0.8

Genetic model 0.9980 0.9958

Clinical + Genetic model 0.9999 0.9999

Clinical model DL‑GRS 0.7395 0.8

Genetic model 0.9989 0.9979

Clinical + Genetic model 0.9999 0.9999

Clinical model EV_DL‑GRS 0.7395 0.8

Genetic model 0.9992 0.9958

Clinical + Genetic model 0.9999 0.9999

Third‑fold (26 SNP) Clinical model SC‑GRS 0.702 0.7836

Genetic model 0.9981 0.9979

Clinical + Genetic model 0.9999 0.9999

Clinical model DL‑GRS 0.702 0.7836

Genetic model 0.9976 0.9999

Clinical + Genetic model 0.9999 0.9999

Clinical model EV_DL‑GRS 0.702 0.7836

Genetic model 0.9984 0.9999

Clinical + Genetic model 0.9999 0.9999
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prevalence = 0.3. In terms of the association between the 
MAF and statistical power of the three GRS, regardless of 
the risk score model, the statistical power increased with 
the rise of MAF (Supplementary Figure S1).

In the survival analysis part of our prostate cancer 
analysis, the GRSs were divided into four groups, and the 
results show that, compared with the other three groups, 
the group of patients with the highest score was more 
prone to recurrence after radical prostatectomy, and 
these results are consistent among the three GRSs. In the 
part of disease prediction power, the final model com-
bined the SNPs of threefold CV and then, used stepwise 
regression analysis to select 26 SNPs and put them into 
the GRS to predict BCR (Supplementary Table S8), thus, 
the prediction power is better than that of cross-valida-
tion analysis (Supplementary Table S6).

Xin J et al. (2018) [1] was the first to evaluate the risk of 
colorectal cancer using the multiple GRSs model, and the 
results showed that SC-GRS model was the best method 
to predict the risk of colorectal cancer in the external 
population. However, this method assumes that all SNPs 
have the same impact on complex diseases. Thus, it is not 
suitable for the construction of a risk assessment model. 
Through simulation and real data, Xin et al. also proved 
that DL-GRS is unsuitable for predicting the external 
population, as its prediction power may be reduced [1]. 
Gui L et al. (2014) [42] found that when SC-GRS and DL-
GRS were included in a model established with the vari-
ables of age, gender, and body mass index, the AUC of 
the models increased by 0.011 and 0.013, respectively, as 
compared with the model not including GRS, indicating 
that DL-GRS has greater prediction power than SC-GRS 
[42], which is consistent with the results of this study.

Although DL-GRS is the best model for predicting 
BCR, the weight of this method mainly comes from its 
research, rather than published literature; therefore, 
when extrapolating other races, it requires further veri-
fication. From the perspective of a whole base group 
association study, the sample size of the prostate cancer 
database of this study is small. In addition, due to the lack 
of survival data, it is impossible to explore the survival 
status of prostate cancer patients suffering BCR after 
prostate resection.

In our final genetic model analysis using logistic regres-
sion (as shown in Table  2), we found that all the genes 
listed are associated with previously reported prostate 
cancer genes [30–41, 43]. Specifically, the human Dachs-
hund1 (DACH1) gene encodes a DNA-binding protein 
that resembles those in the winged helix/Forkhead sub-
group of the helix-turn-helix family. Furthermore, studies 
have shown that DACH1 expression is reduced, and that 
overexpression of DACH1 can inhibit the growth of pros-
tate cancer cell lines [43]. Li Z (2023) discovered a novel 

role for DACH1 in maintaining genomic stability by reg-
ulating DNA repair. In human prostate cancer, reduced 
DACH1 levels, often due to gene deletion or promoter 
DNA methylation, were correlated with poor clinical out-
comes [33]. PLCB4, which encodes a positive regulator of 
the phosphatidylinositol-3-kinase signaling pathway, has 
been implicated in prostate cancer [36].

In the simulation study, SC-GRS demonstrated the 
lowest Type I error rate (Type I Error = 0.043) but exhib-
ited lower statistical power (Power = 0.467 at 0.11 preva-
lence, Power = 0.528 at 0.2 prevalence, Power = 0.589 at 
0.3 prevalence). DL-GRS achieved the highest statistical 
power (Power = 0.606 at 0.11 prevalence, Power = 0.647 
at 0.2 prevalence, Power = 0.707 at 0.3 prevalence) and 
showed robustness with increasing prevalence, although 
it had the highest Type I error rate (Type I Error = 0.057). 
EVDL-GRS provided a balanced approach with good 
power (Power = 0.591 at 0.11 prevalence, Power = 0.635 
at 0.2 prevalence, Power = 0.690 at 0.3 prevalence) 
and moderate Type I error (Type I Error = 0.055). For 
prostate cancer in the first model (Supplementary 
Table  S5), DL-GRS achieved the best AUC (Training 
AUC = 0.9919–0.9979, Testing AUC = 0.7672–0.8462), 
followed by EVDL-GRS (Training AUC = 0.9909–0.9966, 
Testing AUC = 0.7672–0.8495), while SC-GRS had the 
lowest AUC (Training AUC = 0.9878–0.9968, Testing 
AUC = 0.6975–0.7592). Overall, SC-GRS, DL-GRS, and 
EVDL-GRS exhibited similar performance trends in the 
simulation and the first model for prostate cancer. How-
ever, in the prostate cancer final model (Table 3), incor-
porating sampling data to union SNP information, along 
with stepwise regression to retain the 26 most significant 
SNPs (Table 2), improved the statistical power of SC-GRS 
relative to DL-GRS and EVDL-GRS. In the final model 
for prostate cancer, SC-GRS (Training AUC = 0.9979–
0.9981, Testing AUC = 0.9958–0.9979), DL-GRS (Training 
AUC = 0.9976–0.9989, Testing AUC = 0.9958–0.9979), and  
EVDL-GRS (Training AUC = 0.9958–0.9999, Testing 
AUC = 0.9958–0.9999) all performed equally well. There-
fore, if sampling can be used to provide union SNP infor-
mation from multiple datasets, SC-GRS, DL-GRS, and 
EVDL-GRS perform equally well. However, if only a sin-
gle dataset is available, DL-GRS and EVDL-GRS outper-
form SC-GRS in terms of statistical power.

Several studies consistently suggest that lifestyle factors 
such as smoking and nutrition (including whole milk/
high-fat dairy, fish, meat, poultry, eggs, dairy, dietary fats, 
cruciferous vegetables, and tomatoes) are associated with 
prostate cancer recurrence and mortality [44]. Our study 
did not account for the potential impact of unmeasured 
confounders related to these factors on prostate cancer 
outcomes.
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In this study, we utilized the SC-GRS, which assumes 
equal effect sizes for all SNPs; the DL-GRS, which incorpo-
rates odds ratios; and the EVDL-GRS, which accounts for 
both odds ratios and minor allele frequencies. However, our 
GRS methods did not consider linkage disequilibrium (LD), 
which limits the generalizability of our findings beyond the 
East Asian population. Furthermore, using only three GRS 
models may not capture the full range of potential insights, 
as other models could provide different perspectives.

We plan to continue collecting more cases in future 
studies to enhance the representativeness and reliability 
of our results. We are confident that with an increased 
sample size, we will be able to provide more robust and 
widely applicable conclusions. We also plan to compare 
the results of future studies with the findings of this study 
to validate further and deepen our understanding. We 
look forward to making more in-depth contributions to 
the research on prostate cancer.

Previous studies have shown that if genetic factors are 
added to the clinical model, it will have better prediction 
power [45, 46]. Therefore, in addition to using the poten-
tial risk factors for BCR, such as Gleason score, patho-
logical stage, and surgical margin, to establish the clinical 
model, our study included the above risk factors and 
genetic factors in the clinical gene model and compared 
it with the clinical model. Our findings show that add-
ing genetic factors can effectively improve the prediction 
power of the risk model.
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