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Abstract
Background The dysregulation of sialylation plays a pivotal role in cancer progression and metastasis, impacting 
various aspects of tumor behavior. This study aimed to investigate the prognostic significance of long non-coding 
RNAs (lncRNAs) in relation to sialylation. Additionally, we aimed to develop a signature of sialylation-related lncRNAs in 
the context of bladder cancer.

Methods This study used transcriptomic data and clinical information from the TCGA (the Cancer Genome Atlas) 
database to screen for sialylation-related lncRNAs and constructed a prognostic model. The relationships between 
these lncRNAs and biological pathways, immune cell infiltration, drug sensitivity, etc., were analyzed, and the 
expression of some lncRNAs was validated at the cellular level.

Results This study identified 6 prognostic lncRNAs related to sialylation and constructed a risk score model with 
high predictive accuracy and reliability. The survival period of patients in the high-risk group was significantly lower 
than that of the low-risk group, and it was related to various biological pathways and immune functions. In addition, 
this study found differences in the sensitivity of patients in different risk groups to chemotherapy drugs, providing a 
reference for personalized treatment.

Conclusion In this study, we examined the relationship between sialylation-related lncRNA and the prognosis of 
bladder cancer, providing new molecular markers and potential targets for diagnosis and treatment. Our research 
revealed correlations between sialylation-related lncRNA characteristics and clinicopathological features, potential 
mechanisms, somatic mutations, immune microenvironment, chemotherapy response, and predicted drug sensitivity 
in bladder cancer. Additionally, in vitro cellular studies were conducted to validate these findings and lay the 
groundwork for future clinical applications.
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Introduction
Bladder cancer is a highly widespread kind of malignancy 
that impacts the urinary tract [1]. Around 70–80% of 
patients are initially diagnosed with non-invasive blad-
der cancer (NMIBC) [2]. Despite notable advancements 
in the prognosis of NMIBC, a considerable proportion 
of patients, over 60%, nevertheless encounter recur-
rences [3, 4]. Moreover, more than 20% of these individu-
als eventually develop muscle-invasive bladder cancer 
(MIBC), a condition characterized by elevated mortality 
rates and a propensity for metastasis. This underscores 
the pressing necessity for timely and accurate categoriza-
tion of patients in order to customize therapies. Immu-
notherapeutic approaches, including those involving 
immune checkpoint inhibitors (ICIs), exhibit consider-
able potential in enhancing patient care [5]. Hence, it is 
imperative to test the molecular pathways that under-
lie tumor progression in clinical contexts. This valida-
tion will facilitate the advancement of targeted therapy 
approaches aimed at enhancing the prognosis of bladder 
cancer.

Sialylation refers to the process of adding sialic acid 
units to oligosaccharides and glycoproteins at their ter-
minal ends [6]. This modification plays a significant 
biological role in various processes such as embryonic 
development, neurodevelopment, reprogramming, and 
the manifestation of certain pathological conditions, 
including cancer, embryonic lethality, and anomalies in 
the immune system [7]. There is an increasing body of 
evidence that indicates the prevalent presence of abnor-
mal sialylation in human malignancies [6]. This abnormal 
sialylation has been found to play a role in various aspects 
of cancer development, including oncogenesis, tumor cell 
dissociation, invasion, immune evasion, and resistance to 
therapy [7]. In addition, sialyltransferases(STs) have been 
identified as promising targets for the development of 
anticancer treatments [8]. Sialic acid-binding immuno-
globulin-like lectins (Siglecs) are widely distributed on 
various tumor-infiltrating cells, including T cells, neutro-
phils, and natural killer (NK) cells, making them potential 
immune checkpoint targets with anti-tumor therapeu-
tic potential [9–11]. For example, Siglec-6 expression is 
increased on circulating and urinary T cells in patients 
with non-muscle invasive bladder cancer and is associ-
ated with lower survival rates [12]. Additionally, Siglec-7 
may regulate NK cell-mediated anti-tumor immunity in 
bladder cancer [13]. Sialyltransferases are crucial in the 
sialylation process, with significant research focusing 
on their role in cancer. For instance, ST3Gal.I is pivotal 
in the sialylation of the T antigen in bladder cancer [14]. 
Additionally, ST3Gal5 is linked to muscle invasion and 
poor prognosis in bladder cancer patients, where low lev-
els of ST3Gal5 promote the occurrence and progression 
of the disease [15, 16]. Therefore, biomarkers related to 

sialylation molecules may be valuable for predicting the 
prognosis of bladder cancer patients.

Long non-coding RNAs (lncRNAs) are transcripts that 
exceed 200 nucleotides in length, playing significant roles 
in cancer development and progression through epigene-
tic modifications or translational regulation [17, 18]. The 
inherent stability of these biomarkers in the bloodstream, 
along with their resistance to destruction by nucleases, 
makes them highly promising for cancer detection and 
monitoring, particularly in comparison to other biomark-
ers such as circulating tumor cells (CTCs), cell-free DNA 
(cfDNA), circulating tumor DNA (ctDNA), and exo-
somes [19]. Nevertheless, there is a scarcity of research 
on sialylation-associated lncRNAs in cancer, despite the 
extensive use of mass spectrometry in studying abnormal 
sialylation. With the substantial number of unidentified 
lncRNAs, it is conceivable that numerous lncRNAs par-
ticipate in sialylation and Siglec interactions, and their 
clinical relevance in bladder cancer warrants further 
exploration. Therefore, there is an urgent need to iden-
tify lncRNA biomarkers associated with sialylation for 
predicting prognosis and treatment response in bladder 
cancer patients.

Existing researches lack studies on the relationship 
between sialylation-related lncRNA and bladder can-
cer prognosis. Therefore, this study aimed to identify 
prognostic lncRNAs that are related with sialylation and 
Siglec functional pathways in bladder cancer. Besides, 
based on these sialylation-related prognostic lncRNAs, 
we constructed a risk scoring model with high predic-
tive accuracy and reliability. Based on these sialylation-
related prognostic lncRNAs, we constructed a risk 
scoring model with high predictive accuracy and reliabil-
ity. Additionally, the study aimed to establish signatures 
of sialylation-associated lncRNAs. In order to accom-
plish this objective, a thorough examination was carried 
out encompassing the correlation between sialylation-
associated lncRNA signatures, clinicopathological char-
acteristics, underlying mechanisms, somatic mutations, 
the immune microenvironment, chemotherapeutic 
responses in bladder cancer, and anticipated drug sensi-
tivity. Furthermore, we conducted in vitro cellular inves-
tigations to substantiate academic theories and lay the 
groundwork for prospective clinical applications.

Materials and methods
Data and tissue processing
The transcriptome data and clinical information for Blad-
der Urothelial Carcinoma (BLCA) were obtained from 
the Cancer Genome Atlas(TCGA, https://www.cancer.
gov/tcga)database. This dataset included transcrip-
tomic data for 413 bladder cancers and clinical informa-
tion for the corresponding patients [20]. All data are in 
FPKM format, and a total of 413 samples were included 
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in the cohort. To prepare the data for further analysis, 
we annotated it using gene transfer format files obtained 
from Ensembl(https://asia.ensembl.org) and filtered for 
lncRNAs [21]. 

Obtaining sialylation-related long non-coding 
RNAs and developing a prognostic model
The identification of genes involved in the biological pro-
cess of sialylation was accomplished by consulting the 
Molecular Signatures Database (MSigDB), which include 
STs, transporters, and neuraminidases. The association 
between lncRNAs and genes relevant to sialylation was 
assessed using the Pearson correlation test. A total of 
2511 lncRNAs associated with sialylation were discov-
ered based on a correlation coefficient (|r| > 0.3) and a 
significance level (P < 0.001). The cohort of patients was 
randomly allocated into two groups, namely the training 
group and the validation group, with an equal distribution 
ratio of 50:50. The examination of lncRNAs associated 
with sialyation was conducted using one-way regres-
sion analysis. Only those sialyation-related lncRNAs that 
showed a significance level of P < 0.001 in the univariate 
cox regression analysis were considered for inclusion in 
the lasso regression. Following this, lncRNAs associated 
with sialylation were discovered using lasso regression 
and subsequently incorporated into a multifactorial Cox 
regression model in order to provide risk ratings. We 
have successfully identified eight lncRNAs associated 
with prognosis-related sialylation. These lncRNAs will 
be utilized to develop a predictive risk score. We finally 
identified 8 prognosis-related sialyation-related lncRNAs 
to construct a prognostic risk score. Risk score for BLCA 
patients was calculated by the following formula: risk 
score=

∑
n
i=1β i × (expression of LncRNAi). The 

ROC curves were plotted using Kaplan-Meier method 
in “survival” ROC R package. Patients in the cohort were 
divided into high-risk and low-risk groups based on the 
median risk score.

Assessing the value of prognostic sialyation-
related lncRNAs
We conducted Kaplan-Meier survival analysis for over-
all survival (OS) to compare the high-risk and low-risk 
groups, using the “survminer” and “survival” R pack-
ages. In order to examine the distribution of clinical fac-
tors among patients with BLCA in different groups, such 
as age, sex, grading, staging, and TMN staging, we uti-
lized the chi-square test with the “ComplexHeatmap” R 
package. Furthermore, the Wilcoxon test was employed 
in the “limma” [22] and “ggpubr” R packages to evaluate 
the extent of variation in risk scores across patients with 
distinct genders, grades, tumor stages, or node stages. 
Finally, we assessed the feasibility of our model by per-
forming univariate and multivariate Cox regression 

analyses on clinical parameters such as age, gender, stage, 
and risk score to predict the survival of BLCA patients, 
using the “survival” R package.

Functional enrichment analysis
We identified differentially expressed genes (DEGs) for 
mRNAs between the two risk groups using the “limma” 
package in R [22]. We applied a threshold of an abso-
lute log2-fold change (FC) > 1 and a corrected threshold 
P < 0.05 for DEGs selection. Following this, we performed 
an examination of these DEGs utilizing the “clusterpro-
filer” R package. This study encompassed Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway and Gene 
Ontology (GO) analyses, along with Gene Set Enrich-
ment study (GSEA) [23]. 

Construction and validation of a nomogram
The correlation between clinical parameters and risk 
scores was evaluated using univariate and multivariate 
Cox regression analyses. A nomogram was constructed 
incorporating age, clinical grade, risk score, lymph node 
involvement, and pathological grade. We developed OS 
line plots using the R package “rms” to predict the prob-
ability of recurrence-free survival at 1, 3, and 5 years. 
In order to evaluate the precision of our model, we 
employed calibration curves to visually depict the dis-
parity between our projected values and the observed 
results. Additionally, we conducted ROC analysis to 
evaluate the predictive power of the risk score. Princi-
pal Component Analysis (PCA) was conducted using the 
“scatterplot3D” R package to assess the distribution of 
patients across different groups.

Analysis of immune cell infiltration
In order to evaluate the impact of the signature on 
immune cells, we utilized CIBERSORT (Cell-type Iden-
tification by Estimating Relative Subsets of RNA Tran-
scripts; https://cibersort.stanford.edu) to measure the 
abundance of tumor-infiltrating immune cells through 
linear support vector regression [24]. The abundance 
of lymphocyte profiles in the TCGA-BLCA dataset was 
determined using the “CIBERSORT” R package. Further-
more, we conducted an analysis of immune function, 
immune checkpoint differences, immune infiltration, and 
immune checkpoint correlations using R packages such 
as “limma“ [22] ,“tidyverse“ [25] and “GSVA“ [26] .

Tumor mutational burden and drug sensitivity 
prediction
Tumor mutational burden (TMB) was visualized using 
the ‘ggpubr’ package. Survival curves were visualized 
using the “survival” and “survminer” packages. Then, 
We obtained drug sensitivity data from the Genomics 
of Drug Sensitivity in Cancer (GDSC) database (https://

https://asia.ensembl.org
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www.cancerrxgene.org/) [27]. To analyze drug sensitivity, 
we utilized the R package “Oncopredict.” [28].

Cell culture
We obtained two cell lines, SV-HUC-1 and T24, from the 
Cell Bank of the Chinese Academy of Sciences (Shang-
hai, China). These cells were cultured at 37  °C and 5% 
CO2 using DMEM medium supplemented with 10% 
FBS (Gibco, Grand Island, NY, USA) and 1% penicillin/
streptomycin.

Validation of hub genes by quantitative real-time PCR
Total RNA was extracted with TRIzol (Takara), and 
cDNA for each group was synthesized using the Prime-
Script RT kit (Takara). Subsequently, qPCR was con-
ducted using a Roche LightCycler 480 II real-time PCR 
detection system (Roche, Basel, Switzerland). The primer 
sequences for the target genes are as follows: GRASLND-
F/R ( A G G A T T C A G G G G A T G C A C A G/ T G G G C T G A A 
G A T G A G A C G T T), ARHGAP5-AS1-F/R ( C T C A A G A 
G C A A A C C A C C G T A C/ A C A T G T T C C T G C G A A C G A), 
LINC01508-F/R ( C T C T C T C G A A C T T G A A C T T G C C/ 
G C T C C T C T T T C C T G G T G T C T C). To ensure accurate 
measurements, the expression levels of each gene were 
normalized to the expression level of GAPDH.

Results
Recognition of Prognostic sialylation-related LncRNAs and 
model development
A total of 120 messenger RNAs (mRNAs) related to the 
interaction between sialic acid and siglec were initially 

acquired from the MsigDB website. A total of 2511 
potential lncRNAs associated with sialylation were found 
using the Pearson correlation test, employing a threshold 
of |r| > 0.3 and P < 0.001.

In order to assess the prognostic relevance of the 
potential lncRNAs, we utilized 413 lncRNAs from TCGA 
with complete clinical data. Following a random alloca-
tion of the 413 patients into distinct training and vali-
dation groups, we conducted univariate Cox regression 
analysis, with a p-value threshold of 0.001. The present 
investigation resulted in the identification of 14 lncRNAs 
that are related with sialylation and exhibit prognos-
tic importance. The further screening of these variables 
was conducted using lasso regression in order to proceed 
with the subsequent stage, which entailed multifactorial 
Cox regression analysis. (Fig. 1A, B).

Subsequently, a comprehensive investigation was con-
ducted to identify and construct a model for a set of 
six lncRNAs that are connected with sialylation. The 
prognostic significance of these lncRNAs was deter-
mined using multifactorial Cox regression analysis. 
Several genes were identified as negative prognostic fac-
tors, including LINC01508, AC012625.1, AL135905.1, 
GRASLND, and ARHGAP5-AS1. Conversely, AC104785.1 
was determined to be a favorable prognosis factor 
(Fig. 2A).

These 6 sialylation-related LncRNAs were used to cre-
ate a TIL-related LncRNA signature with the following 
risk score formula: Risk score = (0.097657 × expression 
level of LINC01508) + (-0.3505 × expression level of 
AC104785.1) + (0.230 × expression level of AC012625.1) 

Fig. 1 Identifying 6 sialylation-related Long noncoding RNAs (lncRNAs)s. (A) Profiles of Lasso coefficients. (B) Cross-validation for tuning parameter 
selection
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+ (0.2500 × expression level of AL135905.1) + (0.2936 × 
expression level of GRASLND) + (0.1070 × expression 
level of ARHGAP5-AS1).

Subsequently, we evaluated the predicted survival val-
ues of the model by plotting ROC curves for 1, 3, and 
5 years. The area under the curve (AUC) values were 
0.693, 0.698, and 0.688 (Fig. 2B). The AUC values for the 
risk model are not sufficiently high at 1, 3, and 5 years. 
This could be due to factors such as sample size, feature 
variables, and the chosen machine learning algorithms. 
Notably, the AUC values of the 1-year curves were sig-
nificantly higher than other clinical parameters, demon-
strating that the model developed using the risk score 
reliably predicted survival (Fig. 2C).

Value assessment of prognostic sialylation-related 
LncRNAs
Patients were categorized as either high-risk or low-risk 
based on the median of the calculated risk scores in each 
group. In both the training group (Fig.  3, left), the test 
group (Fig.  3, middle), and the combined group (Fig.  3, 
right), the high-risk group exhibited higher mortality 
rates, indicating a less favorable prognosis for patients 
with high-risk scores (p < 0.001). The risk scores and sur-
vival status of the training, test, and combination groups 
are displayed in Fig. 3(bottom).

The results shown in Fig. 4A highlight a significant dif-
ference between stage II and stage III (p = 0.00094) and 
between stage II and stage IV (p = 0.00037). Furthermore, 

Fig. 2 Recognition of Prognostic sialylation-related lncRNAs and Model Development. (A) Multivariate Cox model of 6 sialylation-related lncRNAs. (B) 
ROC curves for 1, 3, and 5 years. (C) The 1-year ROC curves of the risk score and other clinical characteristics
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Fig.  4B reveals that risk scores were lower in stage N0 
compared to stage N2 (p = 0.028). Additionally, Fig.  4C 
demonstrates that T2 had significantly lower scores than 
T3 (p = 0.0018) and also lower than T4 (p = 0.019). Addi-
tionally, the prognostic value of the risk score was evalu-
ated in patients from different stratified cohorts based on 
age, gender, and tumor stage. For this evaluation, we only 
included subgroups with 50 or more patients after strati-
fication. The results indicated that the risk score effec-
tively predicted prognosis in various cohorts, including 
age ≤ 65, age > 65, female, male, stage I/II, and stage III/IV 
(p < 0.001)(Fig. 4D).

To explore the relationship between clinicopatho-
logic characteristics and risk scores, we utilized the chi-
squared (c2) test and Cox regression in the combined 
group. The c2 test indicated differences in grade, clini-
cal stage, and T stage between the high-risk and low-
risk groups (Fig. 5A). Univariate Cox regression analysis 
revealed significant associations of stage (HR 1.643, 95% 
CI: 1.255–2.152, p < 0.001) and risk score (HR 1.084, 95% 
CI: 1.055–1.114, p < 0.001) with the outcome (Fig.  5B). 
Furthermore, multivariate Cox regression analysis con-
firmed a similar association between stage (HR 1.637, 
95% CI: 1.241–2.160, p < 0.001) and risk score (HR 1.087, 
95% CI: 1.059–1.116, p < 0.001) and the outcome, under-
scoring the significant connection between risk scores 
and overall survival (Fig. 5C).

Potential mechanism analysis of the sialylation-related 
LncRNA signature
We conducted KEGG pathway, GSEA, and GO analy-
ses to explore the underlying mechanisms by which the 
risk signature stratifies patient prognosis. Initially, we 
employed pathway analysis and GSEA to uncover the 
biological significance of the sialylation-related lncRNA 
signature. Through the use of the R package “edgeR,” we 
identified a total of 612 DEGs with |log2(FC)| > 1 and 
adjusted P < 0.05 between the two risk groups in the com-
bined data.

According to the GSEA analysis, the high-risk group 
exhibited enrichment in the top five pathways. These 
pathways were identified as cytokine-cytokine receptor 
interaction, extracellular matrix (ECM)-receptor interac-
tion, focal adhesion, neuroactive ligand-receptor inter-
action, and regulation of actin cytoskeleton (Fig.  6A). 
Conversely, the top five enriched pathways in the low-
risk group encompassed alpha-linolenic acid metabo-
lism, drug metabolism - cytochrome P450, linoleic acid 
metabolism, primary immunodeficiency, and ribosome 
(Fig.  6B). In addition, the GO enrichment analysis con-
ducted on the 612 DEGs indicated their participation in 
many biological processes, including epidermis forma-
tion, epidermal cell differentiation, and granulocyte che-
motaxis (Fig. 6C).

Fig. 3 Distribution of risk score (high or low) and status (dead or alive) and KM curves of OS in the training (left), testing (medium), and combined (right) 
sets
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Construction and validation of a sialylation-related 
LncRNA prognostic model
The column line graphs present data on risk score, age, 
lymph node metastatic stage, and pathological grading. 
The column line plot demonstrates a clear association 
between the risk score and OS in patients with BLCA 
(Fig. 7A).

The nomogram’s C-index was found to be 0.693, indi-
cating the predictive accuracy of the model. Addition-
ally, the calibration curves exhibited a high level of 
concordance between the projected probability and the 
observed outcomes. It is worth mentioning that the cali-
bration curves for the OS at 1-year, 3-year, and 5-year 
intervals (Fig.  7E) exhibited a tight adherence to the 
45-degree line. In addition, the nomograms exhibited 

area under the curve (AUC) values of 0.778, 0.743, and 
0.748 for the 1-year, 3-year, and 5-year OS periods, as 
illustrated in Fig. 7B-D. The nomograms exhibit superior 
performance compared to individual clinical predictors, 
as indicated by their high AUC values. This suggests that 
the integration of many risk indicators can improve the 
prognostic accuracy for BLCA. PCA revealed the distri-
bution of the two risk groups along two axes. This obser-
vation suggests that the riskscore-associated lncRNAs 
exhibit a more effective classification of BLCA patients 
into high-risk and low-risk groups (Fig. 7F), compared to 
sialylation-related lncRNAs (Fig. 7G), sialylation -related 
genes (Fig.  7H), and all genes (Fig.  7I). These findings 
highlight the superior discriminative ability of the riskso-
cre-associated lncRNAs in the identification process.

Fig. 4 Significant differences between between risk scores and clinical characteristics in TCGA-BLCA cohort. Differences between risk score and tumor 
stage (A), T stage (B), N stage (C). (D) Survival analysis of the sialylation-related lncRNA signature in different stratified cohorts
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(F) Principal component analysis (PCA) of the risks-
core-related lncRNAs. (G) PCA of the sialylation-related 
lncRNAs. (H) PCA of the sialylation -related genes. (I) 
PCA of the all genes.

Assessing the immune microenvironment of sialylation-
related signature score
In order to delve deeper into the relationship between 
the immune process and risk scores, we conducted an 
assessment of lymphocyte lines using CIBERSORT. The 
results of the CIBERSORT analysis (Fig.  8A), indicate 
that the high-risk group demonstrated a greater preva-
lence of activated T cells CD4 + memory resting Mac-
rophages M0. Conversely, the low-risk group exhibited 
a larger prevalence of active Plasma cells, CD8 + T cells, 
and regulatory T cells (Tregs). The correlation between 
lymphocyte populations and sialylation-related lncRNAs 
is depicted in Fig. 9A. Significantly, there were high asso-
ciations observed between AC104785.1 and Treg, T cells 
CD4 + memory activated, Plasma cells, and Macrophages 

M1. Additionally, a robust link was found between 
AC012625.1 and Plasma cells. Furthermore, there was a 
significant association observed between T cells follicular 
helper and Macrophage M1 with GRASLND. Similarly, 
T cells CD4 memory resting, T cells CD4 memory acti-
vated, and mast cells resting exhibited a high correlation 
with ARHGAP5-AS1.

Our analysis revealed significant variations in immune 
function between the high and low-risk groups, par-
ticularly for APC_co_inhibition, Macrophages, 
MHC_class_I, Parainflammation, TIL, and Treg, as 
demonstrated in Fig.  8B. In addition, our investigation 
involved the evaluation of a total of 79 genes related with 
immune checkpoint. Among these, 47 genes displayed 
differences between the high and low-risk groups, as 
depicted in Fig.S1. Furthermore, the analysis of Fig.  9B 
demonstrates a greater occurrence of C1 subtypes in 
the low-risk groups, while the high-risk groups exhibit a 
higher proportion of C2 subtypes (P = 0.001).

Fig. 5 Value assessment of prognostic sialylation-related lncRNAs. (A) The result of chi-squared test. (B) Univariate Cox regression analysis. (C) Multivariate 
Cox regression analysis
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Tumor mutational burden and drug sensitivity analysis
Both in the high-risk (HR) and low-risk (LR) group, TP53, 
TTN, KMT2D, MUC16, ARID1A and KDM6A exhibited 
mutation rates exceeding 20% (Fig. 10A, B). Patients with 
low tumor mutation burden (TMB) had shorter OS com-
pared to those with high TMB (Fig. 10C). Notably, when 
considering both risk score and TMB, it was evident that 
patients with low TMB and high risk exhibited the poor-
est prognosis (Fig. 10D).

In order to conduct a thorough evaluation of thera-
peutic efficacy in response to various chemotherapeutic 
drugs, we calculated the IC50. Our results showed that 
Sorafenib was less sensitive in the high-risk group, while 
it was more sensitive in the low-risk group compared to 
Cisplatin, Docetaxel, and Dasatinib. Therefore, our risk 

profiles can serve as a valuable tool in evaluating chemo-
therapeutic drug sensitivity (Fig. 10E-H).

Expression validation of sialylation-related LncRNAs 
signature
The expression of model-associated lncRNAs was con-
firmed at the cellular level through quantitative real-time 
polymerase chain reaction (qRT-PCR). In bladder cancer 
(BCa) cell lines, including ARHGAP5-AS1, GRASLND, 
and LINC01508, their expression levels were notably 
elevated when compared to human urinary epithelial SV-
HUC-1 cell lines (Fig. 11A-C).

Fig. 6 Potential mechanism analysis of the sialylation-related LncRNA signature. (A) The top five enriched pathways in the low-risk group. (B) The top five 
enriched pathways in the low-risk group. (C) The result of the GO enrichment analysis
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Fig. 7 Construction and validation of a sialylation-related LncRNA prognostic model. (A) Nomogram constructed by independent prognostic factors. 
(B-D) ROC curves show the predictive accuracy of the nomogram, risk score, and other clinical characteristics. (E) Calibration curves for the OS at 1-year, 
3-year, and 5-year intervals
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Discussion
We followed a sequential approach, employing univari-
ate Cox, lasso, and multivariate Cox regression analyses, 
to create a novel signal based on 6 lncRNAs. Our find-
ings highlight the potential of this 6-lncRNA signature in 
distinguishing patient prognoses, offering a theoretical 

basis for clinical treatment strategies. Furthermore, we 
constructed nomograms that incorporate age, grading, 
N-staging, and risk scores, facilitating the prediction 
of 1-, 3-, and 5-year survival. These nomograms exhib-
ited stronger predictive power compared to traditional 
clinical staging, hinting at the potential for optimizing 

Fig. 8 Immune cell infiltration and immune function of the different risk groups. (A) Immune cell infiltration of the high and low-groups. (B) Immune 
function of the high and low-risk groups
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current clinical staging classifications. The calibration 
plots bolstered this notion by demonstrating superior 
predictive performance for actual survival prognoses in 
BCa patients. This underscores the wide-ranging applica-
tions and practicality of salivary acid-associated lncRNAs 
in prognostic prediction. The results of our study empha-
size the potential of the identified 6-lncRNA signature 
in effectively differentiating patient prognoses, hence 
providing a theoretical foundation for the development 
of clinical treatment options. In addition, we developed 
nomograms that integrate age, grading, N-staging, and 
risk scores, enabling the estimation of 1-, 3-, and 5-year 
survival rates. The nomograms demonstrated supe-
rior predictive capability in comparison to conventional 
clinical staging, suggesting the possibility of enhancing 
existing clinical staging categories. The hypothesis that 
the calibration plots provided evidence of better predic-
tion accuracy for real survival prognoses in breast can-
cer patients was supported. This highlights the extensive 
range of uses and feasibility of lncRNAs related with sali-
vary acid in prognostic prediction.

We observed a strong association between the high-
risk group and several critical pathways through GSEA 
analysis. The high-risk group exhibited connections with 
pathways involving cytokine-cytokine receptor interac-
tions, ECM-receptor interactions, focal adhesion, neu-
roactive ligand-receptor interactions, and regulation of 
the actin cytoskeleton. The results of this study are con-
sistent with previous research suggesting that cytokines 
may contribute to the development, advancement, and 
control of tumors [29]. In addition, it is widely recog-
nized that the modification of focal adhesion plays a cru-
cial role in facilitating the contacts between tumor cells 
and ECM, ultimately leading to the promotion of tumor 

growth and metastasis [30]. This relationship exerts a 
significant impact on critical biological processes such 
as invasion, epithelial-mesenchymal transition (EMT), 
tumor angiogenesis, and stromal fibrosis [31–33]. Fur-
thermore, the notion of EMT holds significant impor-
tance in numerous biological phenomena, with a special 
focus on its involvement in the invasion of tumors and 
the advancement of metastasis [34]. In various malig-
nancies affecting human beings, neoplastic cells undergo 
EMT, a phenotypic alteration characterized by the loss 
of cellular polarity and intercellular adhesion [35]. Con-
versely, these organisms acquire migratory and invasive 
characteristics, hence facilitating their proliferation and 
metastasis [36]. The progression of bladder cancer has 
been extensively described. Meanwhile, numerous stud-
ies have consistently confirmed the significant impor-
tance of dynamic alterations in sialylation during EMT 
and their possible significance in the process of cancer 
metastasis [37]. Meanwhile, sialylation undergoes sig-
nificant dynamic changes during EMT [38]. During EMT, 
the expression levels of sialylation-related enzymes, such 
as STs and neuraminidase (NEU), change markedly [39]. 
Existing research indicates that the expression of STs sig-
nificantly increases in the early stages of EMT, leading to 
an increase in sialic acid content, which may be related to 
changes in glycosylation patterns on the cell surface [40]. 
Additionally, the distribution of sialic acid modifications 
on the cell membrane changes as EMT progresses. Dur-
ing EMT, sialic acid residues appear more frequently on 
the N-glycans of the cell surface, potentially affecting cell 
adhesion and signal transduction [41]. Based on existing 
research and our analysis, we hypothesize that sialylation 
mediates the dynamic changes in EMT through varia-
tions in expression levels, thereby influencing the growth 

Fig. 9 Immunoscape of sialylation-related lncRNAs and risk grops. (A) The correlation between lymphocyte populations and sialylation-related lncRNAs. 
(B) Immune subtypes of the high and low-risk groups
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Fig. 10 Tumour mutational burden (TMB) and Drug susceptibility analysis. (A) The waterfall chart of the frequently mutated genes in the high-risk group. 
(B) The waterfall chart of the frequently mutated genes in the low-risk group. (C) Kaplan–Meier curves of high- and low-TMB on OS. (D) Kaplan–Meier 
curves of TMB and risk score on OS. exploration of the risk signature and drug sensitivity. (E) Docetaxel. (F) Sorafenib. (G) Dasatinib. (H) Cisplatin
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and metastasis of bladder cancer. Furthermore, The 
observed results are consistent with the outcomes of our 
analysis on biological pathway enrichment. Specifically, 
we found a notable enrichment in pathways associated 
with the formation of the epidermis and the differentia-
tion of epidermal cells. Based on the analysis of the high-
risk group associated with sialylation in this study, we 
hypothesize that sialylation contributes to the growth, 
survival, invasion, and metastasis of bladder cancer 
through multiple pathways. First, sialylation may regulate 
the growth, survival, and metastasis of bladder cancer 
cells by affecting cytokine expression. Second, sialylation 
might promote the invasion and metastasis of blad-
der cancer cells by modifying the ECM or its receptors. 
Additionally, focal adhesions, which are complexes that 
connect the ECM to the actin cytoskeleton, play a cru-
cial role in regulating cell movement and signal transduc-
tion. Proteins such as integrins and focal adhesion kinase 
(FAK) are important in cell migration, invasion, and anti-
apoptosis, and these may also be targets through which 
sialylation regulates the progression of bladder cancer. 
These results provide clear direction for our subsequent 
in-depth mechanistic studies.

We conducted an in-depth analysis of the immune 
landscape within the risk model. Firstly, our research 
entailed an evaluation of the composition of immune 
cells in both high-risk groups utilizing CIBERSORT 
and ssGSEA methodologies. The findings of our study 
indicate that the group classified as high-risk demon-
strated significantly elevated levels of M0 macrophage 
infiltration, as well as T-cells CD4 memory inactive, 
which aligns with previous investigations in this field. 
In contrast, the group classified as low-risk exhibited 
heightened amounts of plasma cells, T cells CD8, T cells 
CD4 naive, and Tregs, suggesting that individuals with 
low-risk profiles generally demonstrated a more promi-
nent immune response to tumor development. Immu-
nological checkpoints are a distinct group of receptors 

and ligands that regulate programmed cell death, so 
modulating immunological responses and safeguard-
ing against autoimmune harm, thereby playing a role in 
maintaining immune homeostasis [42]. In the examina-
tion of the two risk-scoring cohorts, it was observed that 
the low-risk group exhibited elevated expression levels 
of some immune checkpoint genes, namely CEACAM1, 
BTNL9, CD96, TNFRSF14, and ICOSLG. Conversely, the 
high-risk group displayed heightened expression of other 
immune checkpoint genes. The observed variation in 
immune checkpoint expression indicates that individu-
als classified as low-risk exhibit reduced levels of immune 
checkpoint infiltration, which in turn facilitates immuno-
logical tolerance and has implications for patient progno-
sis. Additionally, a prevalence of immunological subtype 
C2 (characterized by IFN-γ dominance) was observed in 
the high-risk cohort, representing 54% of the total cases. 
The prevalence of this particular subtype was found to be 
considerably higher in the high-risk group in compari-
son to the low-risk group, while the opposite trend was 
observed for subtype C1. There is an inverse relation-
ship between risk score and TMB, which is a biological 
marker for immune checkpoint inhibitors(ICIs). Previous 
studies have demonstrated that IFN-γ dominant subtypes 
exhibit a strong response to immune checkpoint inhibi-
tors therapy and derive therapeutic benefits from immu-
notherapy interventions utilizing drugs such as anti-PD-1 
and anti-CTLA-4 [43]. Immunotherapy based on ICIs is 
currently a prominent area of focus in the field of oncol-
ogy treatment and serves as a pivotal component in the 
management of diverse malignancies.

However, this study has several limitations. First, the 
sialylation-related lncRNA features were developed and 
validated solely within the TCGA database, which lim-
its the model’s stability and applicability. Second, the 
sample size for the normal group was limited due to cell 
line variability, potentially explaining the inconsistency 
between qPCR validation results and TCGA database 

Fig. 11 Relative expression of lncRNAs. (A) ARHGAP5-AS1. (B) GRASLND. (C) LINC01508
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differential analysis results. Additionally, the AUC values 
for the risk model constructed using six prognostically 
relevant sialylation-related lncRNAs did not meet our 
criteria for reliability at 1, 3, and 5 years. This could be 
due to factors such as sample size, feature variables, and 
the chosen machine learning algorithms. Lastly, while 
we proposed plausible mechanisms for sialylation regu-
lation in bladder cancer based on our findings, experi-
mental validation is still lacking. Given these limitations, 
we suggest future research directions. We plan to collect 
more clinical samples through multicenter collabora-
tions, introduce more feature variables, and optimize the 
model using various machine learning algorithms, such 
as decision trees and their ensembles (e.g., random for-
est, gradient boosting trees), support vector machines 
(SVM), and ensemble learning methods (e.g., stacking, 
bagging, boosting) to select the optimal model, ensuring 
broad applicability and stability. We will collect tumor 
and normal tissue samples from clinical patients and 
design a series of experiments, including qPCR, in vitro 
cell experiments, and in vivo animal model experiments, 
to validate the specific mechanisms of sialylation regu-
lation in bladder cancer. Specifically, we will investigate 
how sialylation-related lncRNAs affect the proliferation, 
migration, and invasion capabilities of bladder cancer 
cells and their roles in the EMT process. In summary, 
this study has successfully created and verified a robust 
integrated model for predicting the prognostic status of 
BCa patients, showcasing superior predictive capabilities. 
We conducted a comprehensive assessment of dispari-
ties in clinicopathological features, TMB, the immune 
microenvironment, and responses to chemotherapy 
between high-risk and low-risk groups. These findings 
significantly contribute to our comprehension of TIL 
characteristics, the identification of new targets for BCa 
immunotherapy, and lay a crucial foundation for future 
personalized treatment approaches.

Conclusion
This study explored the relationship between sialylation-
related lncRNA and bladder cancer prognosis. Six 
sialylation-related lncRNAs associated with the prog-
nosis of BLCA were identified. Based on these identi-
fied lncRNAs, we constructed a predictive model for 
BLCA prognosis, which had the potential to guide clini-
cal decision-making in BLCA management. Our analy-
sis explored various aspects of the connection between 
sialylation and BLCA, encompassing clinicopathological 
characteristics, underlying mechanisms, somatic muta-
tions, the immune microenvironment, chemotherapeutic 
responses, and anticipated drug sensitivity. Additionally, 
we conducted in vitro cellular investigations to validate 
theoretical findings and lay the groundwork for future 
clinical applications. In the future, we plan to collect 

more clinical samples through multi-center collabora-
tions, introduce more feature variables, and use various 
machine learning algorithms to optimize the model. Fur-
thermore, we aim to verify the specific mechanisms of 
sialylation regulation in bladder cancer through in vitro 
cell experiments and in vivo animal model experiments.
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