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prognostic gene expression biomarkers in
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Abstract

Background: In the past ~15 years, the identification of diagnostic and prognostic biomarkers from gene expression
data has increased our understanding of cancer biology and has led to advances in the personalized treatment of
many cancers. A diagnostic biomarker is indicative of tumor status such as tumor stage, while a prognostic biomarker
is indicative of disease outcome. Despite these advances, however, there are no clinically approved biomarkers for the
treatment of bladder cancer, which is the fourth most common cancer in males in the United States and one of the
most expensive cancers to treat. Although gene expression profiles of bladder cancer patients are publicly available,
biomarker identification requires bioinformatics expertise that is not available to many research laboratories.

Description: We collected gene expression data from 13 publicly available patient cohorts (N = 1454) and developed
BC-BET, an online Bladder Cancer Biomarker Evaluation Tool for evaluating candidate diagnostic and prognostic gene
expression biomarkers in bladder cancer. A user simply selects a gene, and BC-BET evaluates the utility of that gene’s
expression as a diagnostic and prognostic biomarker. Specifically, BC-BET calculates how strongly a gene’s expression
is associated with tumor presence (distinguishing tumor from normal samples), tumor grade (distinguishing low- from
high-grade tumors), tumor stage (distinguishing non-muscle invasive from muscle invasive samples), and patient
outcome (e.g., disease-specific survival) across all patients in each cohort. Patients with low-grade, non-muscle invasive
tumors and patients with high-grade, muscle invasive tumors are also analyzed separately in order to evaluate whether
the biomarker of interest has prognostic value independent of grade and stage.

Conclusion: Although bladder cancer gene expression datasets are publicly available, their analysis is computationally
intensive and requires bioinformatics expertise. BC-BET is an easy-to-use tool for rapidly evaluating bladder cancer gene
expression biomarkers across multiple patient cohorts.
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Background
Cancer is a genetic disease [1]. A cancer cell inherits or
acquires mutations that enable it to grow efficiently,
replicate indefinitely, support angiogenesis, avoid apop-
tosis, and in some cases metastasize [2]. In the past
~15 years, gene expression profiling of human cancers
has revolutionized our understanding of cancer as a gen-
etic disease and has expedited the identification of driver
mutations and biomarkers for personalized treatment. A
diagnostic biomarker is a molecule that is indicative of
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cancer status, such as the existence of a tumor, or its
stage, grade, or clinical subtype; a prognostic biomarker
is indicative of disease outcome.
Examples of prognostic biomarkers in routine clinical

use include the OncotypeDx and MammaPrint gene
panels, which both predict the likelihood of disease
recurrence in breast cancer and provide patients and
clinicians with relevant information regarding the poten-
tial benefit of chemotherapy [3, 4].
In the United States, bladder cancer is the fourth most

common cancer in males, the eighth most common can-
cer in females [5], and one of the most expensive cancers
to treat [6]. At diagnosis, approximately 20–30 % of blad-
der cancer patients harbor muscle invasive tumors [7] and
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these patients have a five-year survival rate of approxi-
mately 43 % [8]. However, despite the importance of this
disease there are no prognostic biomarkers or targeted
therapies in clinical use.
Data from high-throughput gene expression studies

(that simultaneously measure the expression of 1000s of
genes) are typically deposited into public databases such
as the Gene Expression Omnibus (GEO; Barrett and
Edgar, 2006) and ArrayExpress [9]. These databases
function primarily as data repositories where data is
downloaded and analyzed using in-house bioinformatics
tools. This analysis is often time-consuming and requires
computational resources and bioinformatics expertise
often not available to biologists or clinician-researchers.
Furthermore, there are currently no bladder cancer gene
expression databases that allow for an automated and
comprehensive evaluation of both diagnostic and prog-
nostic biomarkers in patients across multiple cohorts. In
particular, the GEO2R tool allows for the identification
of diagnostic biomarkers in any GEO cohort, but cannot
identify prognostic biomarkers and cannot analyze mul-
tiple patient cohorts in a single analysis. Other databases
include the KM plotter [10], which generates Kaplan-
Meier survival curves for lung, breast, and ovarian cancer
patients only; and PrognoScan [11] and SurvExpress [12],
which generates Kaplan-Meier curves for only a small sub-
set of the available bladder cancer patients. None of the
above mentioned tools can identify prognostic biomarkers
independent of stage or grade.
Here, we describe an online Bladder Cancer Biomarker

Evaluation Tool (BC-BET) for rapid evaluation of diag-
nostic and prognostic biomarkers in bladder cancer,
using data from 13 patient cohorts (N = 1454). The next
section describes the patient cohorts and analyses that
are implemented in BC-BET. We then demonstrate the
utility of the tool by analyzing FGFR3, a gene known to
be associated with tumor grade and stage in bladder
cancer.

Construction and content
Patient cohorts and gene expression datasets
We performed a systematic search of the Gene Expression
Omnibus (GEO) [13] and Array Express [9] and identified
all entries with the keyword “bladder cancer” whose data
was obtained by “transcription profiling by array”. Cohorts
were excluded if all patients received neoadjuvant or
adjuvant chemotherapy. Of the patient cohorts identified,
four cohorts (GSE88, GSE89, GSE7476, GSE27448) were
then excluded due to an insufficient sample size for both
diagnostic (<10 per group) and prognostic (<10 events)
biomarker evaluation (see below). Eleven patient cohorts
from GEO and ArrayExpress met our inclusion criteria.
Two additional cohorts were identified following a litera-
ture search and downloaded from supplemental material
to publication [14, 15]. In these cohorts, individual pa-
tients were excluded from the survival analyses if they
were treated by neoadjuvant chemotherapy and excluded
completely if their tumors did not have urothelial hist-
ology. Individual patients treated with intravesical therapy
or adjuvant chemotherapy can be optionally excluded
from the prognostic biomarker evaluation analysis (see
Prognostic biomarker evaluation and survival analysis).
In all, BC-BET contains 13 patient cohorts (N = 1454)
profiled on 10 distinct microarray platforms. Cohorts
are named according to the institution or individual
responsible for collecting and uploading the dataset,
and are summarized in Table 1. All patient samples
were collected with approval from an appropriate Insti-
tutional Review Board, as documented in the original
publications (see Table 1).
For each cohort, the processed gene expression data was

downloaded. Three cohorts (Blaveri, AUH-2, and MDA-1)
had missing values. Microarray probes with missing values
in >20 % of samples were removed and expression values
imputed using the impute package (impute.knn function)
in R with default parameters. Probes are matched to genes
based on current microarray (e.g., Affymetrix) annotation.
When multiple probes exist for a gene, the probe with the
highest mean expression is used [16]. In cohorts with
replicate samples (AUH-2, MSKCC, Stransky-1, and
Stransky-2), replicate samples were averaged to produce a
single gene expression profile for each patient. In the
MDA-1 cohort, because only two individuals had NMI tu-
mors, the two individuals with NMI tumors are excluded
from the database. When the same patient was profiled in
multiple cohorts, and both cohorts are analyzed (i.e., the
gene of interest is profiled in both cohorts), then duplicate
patients are removed from one of the cohorts in order to
prevent biasing of the results. For details, and for more
information about the patient cohorts, sample processing,
and patient exclusion, see Additional file 1: Table S1.
Diagnostic biomarker evaluation
For a specified gene, BC-BET evaluates whether the
candidate gene is differentially expressed between the
following groups which we denote as group A and
group B, respectively: tumor and normal samples; high-
grade (HG) and low-grade (LG) tumors; and muscle
invasive (MI) and non-muscle invasive (NMI) tumors.
LG and HG tumors correspond to G1-G2 and G3,
respectively, or are classified according to the low- vs.
high-grade classification system [17, 18]. NMI and MI
tumors correspond to Ta-T1 or T2-T4 tumors, respect-
ively [19]. Group differences are quantified by fold-
change (FC) or by the area under the receiver operating
characteristics curve (AUC). FC is calculated using the
formula



Table 1 The 13 patient cohorts (N = 1454) included in BC-BET. The numbers in the table correspond to the number of patients with
each clinical characteristic or available endpoint that are included in the database and analyzed. A ‘-’ denotes insufficient sample size
for analysis

# of samples

Cohort (availability)* Platform Normal, Tumor LG, HG NMI, MI DSS OS RFS Total (N)

AUH-1 [27] (GSE3167) Affymetrix Human Genome U133A 9,41 8, 32 28, 13 – – – 50

AUH-2 [28](GSE5479) MDL Human 3 k – 98, 271 351, 51 – – – 404

Blaveri [14] (S) UCSF Human Array 2.0 – 10, 68 27, 53 – 74 – 74

CNUH [29] (GSE13507) Illumina human-6 v2.0 10, 165 105, 60 104, 61 165 165 – 175

DFCI [30] (GSE31684) Affymetrix Human Genome U133 Plus 2.0 – 6, 84 15, 78 – – 90 93

Lindgren [31] (GSE19915) Swegene 12,144 72, 72 97, 45 – 142 – 156

Lindgren-2 [32] (GSE32548) Illumina HumanHT-12 V3.0 – 56, 75 92, 38 – 89 – 131

MDA-1 [33] (GSE48276) Illumina HumanHT-12 WG-DASL V4.0 R2 – – – – 22† – 22

MDA-2 [33] (GSE48075) Illumina HumanHT-12 V3.0 – – 67, 73 – 73† – 140

MSKCC [15] (S) Affymetrix Human Genome U133A 38,91 18, 73 25, 66 87 – – 129

UVA [34] (GSE37317) Affymetrix Human Genome U133A – – 8, 10 – – – 18

Stransky-1 [35] (E-TABM-147) Affymetrix Human Genome U95A 5,26 11, 15 9, 17 – – – 31

Stransky-2 [35] (E-TABM-147) Affymetrix Human Genome U95Av2 – 13, 16 16, 15 – – – 31

Total 74, 467 397, 769 839, 523 252 565 90 1454

*Gene expression data for all cohorts are publicly available from the Gene Expression Omnibus (GEO) [13] with the given Accession # (GSE ID), from Array Express
[9] (Accession # E-TABM-147) or as Supplementary material to publication (S). †patients have MI, HG tumors (MDA-1) or MI tumors with unspecified grade (MDA-2).
Abbreviations: LG, low grade; HG, high grade; NMI, non-muscle invasive; MI, muscle-invasive; DSS, disease-specific survival; OS, overall survival; RFS, recurrence-free survival
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FC ¼ mean expression of group A samples
mean expression of group B samples

The AUC quantifies the ability of gene expression to
discriminate between two groups and is equivalent to
the probability that a randomly selected sample from
group A has higher expression than a randomly selected
sample from group B. We note that AUC is a better
measure of a biomarker’s predictive value, while FC may
have a more intuitive biological interpretation. Statistical
significance is assessed by either the two-sample t-test
(which tests the hypothesis that FC = 1) or the non-
parametric Wilcoxon-Rank sum test (which tests the hy-
pothesis that AUC = 0.50).

Prognostic biomarker evaluation and survival analysis
Endpoints include disease-specific survival (DSS), overall
survival (OS), or recurrence-free survival (RFS). The
events for these endpoints are death from disease, death
from any cause, and disease recurrence for DSS, OS, and
RFS, respectively. Because there is no single endpoint
consistently available across all cohorts with survival
information, a user can opt to use the Best Available
endpoint, which is taken to be the first available endpoint
in the following order: DSS, OS, and RFS. The endpoints
available for each cohort are listed in Table 1. Although
selection of the Best Available endpoint results in the
selection of different endpoints for different cohorts, pa-
tients with MI tumors have significantly (P < 0.05) poorer
outcomes than patients with NMI tumors using the best
available endpoint in 5/6 cohorts that include both NMI
and MI tumors (Additional file 1: Table S2), which is
consistent with RFS and OS analyses in a long-term study
of over one thousand patients [8]. Patients with HG
tumors also have significantly (P < 0.05) poorer outcomes
than patients with LG tumors in all cohorts with more
than 10 NMI tumors (Additional file 1: Table S2). There-
fore, stage and grade are consistently associated with
outcome in these diverse cohorts when the best available
endpoint is used.
With the exception of CNUH and DFCI, definitive

treatment of all patients was either transurethral resec-
tion of the bladder or radical cystectomy. In CNUH, 56
patients with NMI tumors received intravesical Bacillus
Calmette-Guerin therapy and 26 patients with MI
tumors received cisplatin-based adjuvant chemotherapy
(along with one patient with an NMI tumor). Because
neither of these treatments are associated with out-
come in this cohort (Additional file 2: Figure S1A-B),
these patients are included by default in the survival
analysis, but optionally can be excluded. In DFCI, there
is a confounding between TNM staging and treatment
with chemotherapy. In particular, 32 patients with MI
tumors receive adjuvant chemotherapy while 1 patient
with an NMI tumor receives adjuvant chemotherapy.
Of the treated patients having MI tumors, 84 % have
nodal involvement or distant metastases, and treated
patients have a higher risk of recurrence than non-
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treated patients (Additional file 2: Figure S1C). The
user can optionally remove these treated patients from
the survival analysis if desired.
Survival analysis is carried out using the coxph function

in R to obtain a hazard ratio (HR) and log-rank p-value
based on the cutpoint selected by the user. If the median
cutpoint is selected, patients are separated into two groups
according to those with high expression (≥ the median)
and low expression (< the median), and the HR corre-
sponds to the hazard rate of the high expressers relative to
the hazard rate of the low expressers. Alternatively, the
continuous expression value of the gene may be used, in
which case the HR is relative to a two-fold increase in
gene expression.

Utility and discussion
BC-BET was developed to allow for a systematic and
comprehensive evaluation of candidate diagnostic and
prognostic biomarkers across publicly available bladder
cancer gene expression datasets. The user selects a gene,
and BC-BET evaluates whether the gene of interest is a
robust biomarker for tumor status, grade, and stage,
based on its expression. For diagnostic biomarkers, the
user selects the class comparison measure (FC or AUC)
to quantify differences between tumor and normal sam-
ples, HG and LG samples, and MI and NMI samples.
To evaluate the utility of a gene as a prognostic bio-

marker, the user selects the desired endpoint (DSS, OS,
RFS, or Best Available; see Construction and Content).
Three analyses are then carried out: an evaluation of the
prognostic value of the gene in cohorts containing patients
with both NMI and MI tumors, in patients containing
only LG, NMI tumors in each cohort, and in patients
containing only HG, MI tumors. The latter analyses are
critical for evaluating whether a biomarker has prognostic
value independent of stage and grade, and are a unique
feature of BC-BET. We note that there is one cohort
(MDA-2) containing patients with MI tumors and un-
known grade status, and the results from this cohort are
displayed along with the results for patients with HG, MI
tumors.

Case study: evaluation of FGFR3
In order to demonstrate the functionality of BC-BET, we
will evaluate the diagnostic and prognostic value of
fibroblast growth factor receptor 3 (FGFR3). Genomic
studies in bladder cancer suggest that MI and NMI
tumors arise through divergent genomic pathways [20]
and may arise from distinct progenitor cell types [21].
Specifically, activating HRAS and TP53/RB1 mutations
are more prevalent in MI tumors while FGFR3 and
KDM6A mutations are more prevalent in NMI and LG
tumors [22–26]. Furthermore, FGFR3 mutation status is
positively correlated with FGFR3 expression [25]. We
therefore expect high FGFR3 mRNA expression to be
associated with NMI and LG tumors in BC-BET.
A screenshot of the BC-BET homepage is provided in

Fig. 1. Here the user selects the gene symbol of interest
from a drop down menu of available genes, and sets the
statistical parameters for the analysis. For class compari-
son, we will use FC to measure differential expression
across tumor status, grade, and stage, and calculate
p-values using the Wilcoxon Rank-Sum test. For survival
analysis, we will look at continuous FGFR3 expression
using the Best Available endpoint. The user also has the
option of including or excluding treated patients from
the CNUH and DFCI cohorts. Clicking on the Patient
Analysis button carries out the desired evaluation.
Figure 2 contains a screenshot summarizing the diag-

nostic (Fig. 2a) and prognostic (Fig. 2b) value of FGFR3.
The diagnostic value of the gene is summarized and il-
lustrated according to whether the gene is up-regulated
(FC > 1) or down-regulated (FC < 1) in group A (i.e.,
tumor samples, HG tumors, or MI tumors) relative to
group B (i.e., normal samples, LG tumors, or NMI
tumors, respectively), and whether or not the result is
statistically significant (P < 0.05). The prognostic value of
the gene is summarized according to whether the gene
is negatively (HR > 1) or positively (HR < 1) associated
with survival, and whether or not the result is statisti-
cally significant (P < 0.05). A legend is included on the
results page displayed by BC-BET (Fig. 2c).
Clicking on the appropriate View Results radio button

provides detailed numeric results indicating the diagnos-
tic value (FC and p-value) and prognostic value (HR and
logrank p-value) for each cohort for the chosen analysis.
By default, the “Tumor vs. Normal” and “Poor vs. Good
Prognosis (NMI +MI patients)” detailed results are
shown. The full set of results can be downloaded as an
Excel spreadsheet by clicking the Download Results link
at the top of the page (Additional file 3: Table S3).
From these results we see that FGFR3 expression is

significantly (P < 0.05) up-regulated in tumor samples
(i.e., is higher in tumor samples than in normal samples)
in 4/5 cohorts with this information, indicating its value
as a diagnostic biomarker. FGFR3 expression is also
significantly (P < 0.05) down-regulated in HG tumors
(i.e., is higher in LG tumors than HG tumors) in 8/10
cohorts, and significantly down-regulated in MI tumors
in 11/12 cohorts with stage information. However, as a
prognostic biomarker, FGFR3 expression is only signifi-
cantly (P < 0.05) associated with outcome in 2/6 cohorts,
although in all cohorts it is positively associated with
survival (HR < 1). In addition, FGFR3 does not have any
prognostic value independent of stage and grade, as it is
not significantly associated with outcome in patients
with LG, NMI tumors or consistently associated with
outcome in patients with HG, MI tumors. The above



Fig. 1 Screenshot of BC-BET database. The user selects the gene symbol (FGFR3 is shown) from a dropdown list of available genes, and specifies
additional parameters for the analysis. Here, class comparisons are quantified by fold change (FC), p-values will be calculated by the non-parametric
Wilcoxon Rank-Sum test, and survival analysis will use the Best Available end point (see Construction and Content) and the continuous gene expression
value, and treated patients will be included in the survival analysis in the CNUH and DFCI cohorts. The user clicks on Patient Analysis to evaluate
the gene

Fig. 2 Screenshot of BC-BET analysis of FGFR3. The (a) diagnostic and (b) prognostic value of the gene is summarized graphically across the
available cohorts. The results are color coded according to whether gene expression is (a) significantly (P < 0.05) up-regulated (red) or down-regulated
(blue), or not significantly (P > 0.05) up-regulated (pink) or down-regulated (light blue), in normal, high grade, or non-muscle invasive samples (compared
to tumor, low grade, and muscle invasive samples, respectively); and whether gene expression is (b) significantly (logrank P < 0.05) negatively (red) or
positively (blue) associated with survival, or not significantly (P > 0.05) negatively (pink) or positively (light blue) associated with survival. Regions of each
pie chart are labeled according to the number of cohorts with the corresponding result. (c) Summary of BC-BET parameters and legend
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results are consistent with previous studies showing that
FGFR3 protein expression is associated with stage and
grade in bladder cancer [25], and supports investigation
into targeting FGFR3 in patients with NMI tumors [20].
However, FGFR3 expression has little prognostic value
based on the available gene expression cohorts.

Future developments
BC-BET will be updated periodically with additional gene
expression datasets as they become available. In addition,
new features including the ability to query the database
with a list of genes or by probe, and the option to generate
Kaplan-Meier curves are expected to be implemented in
future versions of BC-BET.

Conclusions
The identification of diagnostic and prognostic biomarkers
based on gene expression data is a powerful approach for
investigating cancer. Although many gene expression
datasets are available, the comprehensive analysis of
multiple patient cohorts requires bioinformatics expertise
not always available to researchers. BC-BET is a Bladder
Cancer Biomarker Evaluation Tool developed for the
comprehensive and rapid evaluation of diagnostic and
prognostic biomarkers in bladder cancer across multiple
patient cohorts. However, BC-BET has several limitations.
In particular, the available patient cohorts included here
(Table 1 and Additional file 1: Table S1) are heteroge-
neous, profiled on multiple platforms, and lack a common
endpoint for survival analyses. Although the identification
of diagnostic or prognostic biomarkers in multiple patient
cohorts is promising, any biomarker identified using
BC-BET ultimately must be prospectively validated to
determine its clinical utility. Nevertheless, the identifica-
tion of robust biomarkers in bladder cancer will increase
our understanding of this disease and may have important
implications for treatment.

Availability and requirements
BC-BET requires only a web browser and is available from
Eastern Connecticut State University’s Bioinformatics
Page: http://bioinformatics.easternct.edu/BCBET.

Aditional files

Additional file 1: Table S1. Summary of patient cohorts, sample
exclusion and processing for BC-BET. The Complete cohort columns
correspond to all samples available at the given accession number or
publication, while the BC-BET columns corresponds to the samples
included in the database. Table S2. Association of stage (MI vs. NMI)
and grade (HG vs. LG) with the best available endpoint. Statistically
significant associations (P < 0.05) are highlighted in bold.

Additional file 2: Figure S1. Association of treatment with outcome in
CNUH and DFCI cohorts. Kaplan-Meier curves for CNUH cohort showing
association of disease-specific survival (DSS) and overall survival (OS) with
(A) intravesical Bacillus Calmette-Guerin (BCG) therapy in patients with
NMI tumors and (B) cisplatin-based adjuvant chemotherapy in patients
with MI tumors. C, Association of recurrence-free survival (RFS) with adjuvant
chemotherapy in patients with MI tumors in DFCI chort. P-values are
calculated by log-rank test. Abbreviations: HR, hazard ratio; N+, nodal
involvement (pN1-pN3); M+, distant metastasis.
Additional file 3: Table S3. BC-BET results: evaluation of FGFR3. The
spreadsheet consists of multiple sheets with a description of each
sheet at the top. The TUMOR, GRADE, and STAGE sheets contain the
results of the diagnostic biomarker evaluation comparing tumor vs.
normal samples, HG vs. LG tumors, and MI vs. NMI tumors, respectively. The
SURVIVAL, SURVIVAL.LG.NMI, SURVIVAL.HG.MI sheets contain the results of the
prognostic biomarker evaluation in patients with both NMI and MI tumors,
patients with LG, NMI tumors, and patients with HG, MI tumors, respectively.

Abbreviations
LG: Low-grade; HG: High-grade; NMI: Non-muscle invasive bladder cancer;
MI: Muscle invasive bladder cancer; FC: Fold-change; AUC: Area under the
receiver operating characteristic curve; DSS: disease-specific survival;
OS: Overall survival; RFS: Recurrence-free survival; HR: Hazard ratio.
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