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Abstract

Background: Numerous studies indicated that Intravesical prostatic protrusion is relevant to prognosis of LUTS,
however, the confounding effect that is brought about by prostate volume, urethra anterior curvature angle and
other factors makes it hard to evaluate the role of intravesical prostatic protrusion in clinical observation.

Methods: We proposed a fluid structural interaction analysis approach. 3D models were constructed based on MRI
images, and prostatic urethra diameters were calibrated with urodynamic data. Comparisons of urine flow dynamics
were made between models with various degree of intravesical prostatic protrusion, while the intravesical pressure,

confounding effects.

freatment.

promising marker in clinical decision making.

anterior urethra curvature angle and diameter of prostatic urethra were same among all models to rule out their

Results: Simulation result showed that the decrement of diameter and increment of variation in cross-sectional
area for prostatic urethra were related to the degree of intravesical prostatic protrusion. Such deformation would
lead to deterioration of flow efficiency and could compromise the effect of bladder outlet obstruction alleviation

Conclusions: These results provided further evidence for intravesical prostatic protrusion being an independent risk
factor for bladder outlet obstruction severity and demonstrated that intravesical prostatic protrusion would be a

Background

Intravesical prostatic protrusion (IPP) is the extent to
which the prostate protrudes into the bladder, defined as
distance from protruded prostate to the base of bladder,
and can be measured in midline sagittal plane of the
prostate [1]. Population based data indicated that 10 %
of male between 40 to 79 years old had an IPP of
10 mm or greater [2]. IPP is considered as a prognostic
factor for LUTS [3, 4]. And the fact that IPP can be eval-
uated with non-invasive trans-abdominal ultra-sound
made it a promising candidate for initial assessment of
LUTS patient [5]. But the mechanism underlying the rela-
tionship between IPP and bladder outlet obstruction is
still unclear. One key issue the confounding effect caused
by prostate volume variation and urethra curvature angle.

* Correspondence: ZhouxingZh@126.com

'Department of Urology, The Second Affiliated Hospital of Guangzhou
Medical University, 250 Changgang road, Guangzhou 510260, China
Full list of author information is available at the end of the article

( BioMVed Central

Because they are both risk factors for LUTS severity and
are closely related with IPP, it is difficult to control these
confounding factors with observational study. Computa-
tional modeling on the other hand, is a promising alter-
nate, and would shed a light on understanding the role for
IPP in bladder outlet obstruction.

Hydraulic energy is the driven force in voiding process.
It is lost due to resistance of urethra. Accurate recon-
struction of anatomical feature for lower urinary tract is
crucial for calculation of hydraulic energy loss. Compu-
tational fluid dynamic (CFD) study was proved to be ad-
vantageous in such aspect [6-8]. However, rigid wall
boundary assumption in previous studies ruled out the
interaction between urine flow and urethra wall move-
ment, especially prostatic urethra wall. To overcome this
limitation and investigate the role for IPP in bladder out-
let obstruction, we carried out a fluid structural inter-
action analysis in models reconstructed from MRI data
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with various degree of IPP, then compared the difference
in flow efficiency among these models.

Methods

The model and boundary conditions

A retrospective revision of the clinical data for all pa-
tients, presenting with lower urinary tract symptoms
secondary to benign prostate hyperplasia (LUTS/BPH),
who also completed MRI scan of pelvic region and pres-
sure flow study before surgery, in the time period from
January 2000 to December 2014 was carried out. Diag-
nosis of LUTS/BPH was established if criteria of the 5th
International Consensus Committee on BPH [9] was
met. The data from MRI scanning (Discovery MR750,
GE Healthcare) are needed for model reconstruction,
and the pressure flow study are needed for calibration of
arbitrary determined parameters of the model. Patients
with a history of neurogenic bladder, previous pelvic sur-
gery or urinary cancer were excluded, detrusor insuffi-
ciency was also ruled out. Ten male patients were
included for the study after providing informed consent.
Approval for the study was granted by the ethics commit-
tee of Second Affiliated Hospital of Guangzhou Medical
University.

Organ contouring for prostate, bladder and surround-
ing connective tissue was done in Mimics (Materialise,
Leuven Belgium) by studying axial T2 MRI images of
each patient. This was conducted by one senior urologist
and confirmed by another radiologist. Degree of IPP was
measured in mid-sagittal plane. First a line was drawn
from the anterior to posterior intersections of the bladder
base and prostate, then the distance between the pro-
truded prostate to this line is defined as IPP (Fig. 1a, f),
and categorized as grade I(<5 mm), grade II(5 ~ 10 mm)
and grade III(>10 mm) [10]. Then three-dimensional
models were constructed from contouring region of each
slice (Fig. 1le), and optimized (Fig. 1f) with SolidWorks
(DS Solidworks, Massachusetts, USA).

Since prostatic urethra can’t be clearly identified in
MRI images [11], model was reconstructed with arbi-
trary parameters. The urethra model was divided into
three parts. The proximal part (Fig. 2a) was a transla-
tional zone from bladder to urethra, 10 mm in length
with a diameter decreasing from the width of normal
bladder neck(8 mm) to prostatic urethra width [6]. The
distal part (Fig. 2a) was another 10 mm long transla-
tional zone between distal prostatic and anterior urethra.
The urethra in-between started at bladder neck, curved
anteriorly at veru montanum and ended near at the
prostatic apex [11]. These key points were marked spe-
cifically during organ contouring to define a fitting
spline that would be closest to the prostatic urethra
course (Fig. 1a-d). Then this part of urethra was mod-
eled as a cylindrical structure running along the spline.
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The diameter for anterior urethra(dy emea) Was set to 5
and 4 mm for meatus, corresponding to the average
cross-sectional area of around 20 mm? for anterior ur-
ethra [12, 13]. Diameter for prostatic urethra during
voiding process was a parameter paramount for accurate
simulation. The value should be between 1 mm and the
diameter of anterior urethra [14]. Five candidate diame-
ters (1, 1.5, 2, 3 and 4 mm) were proposed for initial
diameter of prostatic urethra (dprostate) Result of
Abrams-Griffiths nomogram in our pilot study showed
that these 5 candidate diameter covers the pressure-flow
relationship from obstructed to unobstructed scenario
(Additional file 1: Figure S1). This coincided with previ-
ous result [15]. In this way, we could preserve the ana-
tomic feature of anterior urethra curvature, and find the
optimum diameter which would represent the obstruc-
tion level in prostatic urethra at the same time.

Fluid structural interaction analysis in ANSYS
(ANSYS, Inc. Canonsburg, USA) was employed to study
the deformation of prostate and its influence on urine
flow. Boundary conditions were configured as follows
(Fig. 1f): (1) Superior wall of bladder was set as inlet
with preset total pressure; (2) Meatus of the urethra was
set as outlet with 1 atm (101,325 Pa) static pressure; (3)
Fluid-structural interface region included the bladder
wall which lay over the protruded prostate, the sur-
rounding connective tissue, the bladder neck and pros-
tatic urethra; (4) Fixed support was added to the lateral
wall of prostate and the surrounding connective tissue,
representing the supportive structure around the pros-
tate, along with fascia and pelvic supportive structures.
The properties of the fluid were set as water. Pilot stud-
ies indicated that for all models in our simulation, the
reynolds number, defined as Re = pvd/n (p is the density
of fluid, 1 is the dynamic viscosity of fluid, v and d are
the velocity and hydraulic diameter of flow, respectively),
range from 7000 to 13,000 (Additional file 2: Table S1),
which were greater than 4000. So k-¢ turbulence model
was used for CFD analysis. For the structural analysis,
prostate was assumed to be linear elastic [16] (Poisson
ratio:0.4, Young’s modulus: 21kPa). The same assump-
tion was applied to connective tissue (Poisson ratio:0.4,
Young’s modulus:15kPa).

Simulation planning

By adopting five candidate diameter of prostatic urethra
to all ten patients, 50 candidate models were recon-
structed. Intravesical pressure (P,.s) measured at max-
imal urine flow rate (V,,) was used as total pressure for
inlet, then flow rate (V,.) was calculated with fluid struc-
tural analysis model. Bladder volume was set to be more
than 200 ml in all models. Calculated flow rate (V.) and
measured flow rate (V,,) were compared to select the
Optimal dprostate'
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Fig. 1 Prostate and bladder model construction MR images of lower urinary tract were collected (a sagittal plane, b-d axial plane, b bladder neck,
c: veru montanum, d prostatic apex), and 3D model were reconstructed from organ contouring (e), and optimized (f). Measurement for IPP was
shown in dash line in A and F. VM: veru montanum, BN: bladder neck, Ap: prostate apex, U: anterior urethra

V)
£
| \

bladder \

One model from a patient with grade 2 IPP was selected
by random, and marked as model 2. Another two models
with different grades of IPP were created by adjusting
the shape of the protruded part. These two models were
marked as model 1 (grade 1 IPP model) and model 3
(grade 3 IPP model). Shape of the bladder neck, pros-
tatic urethra diameter and anterior urethra curvature
angle were same among three models (Additional file 3:

Figure S2). Same boundary conditions were applied to
all models. For each model, Fluid structural interac-
tion(FSI) analysis were conducted under three different
inlet pressure(7840.8, 17081.1, 13721.4 Pa), results of
prostatic deformation and flow efficiency were compared
among three models. Then, to simulate the obstruction al-
leviated scenario, initial diameter of prostatic urethra was
increased to 2 and 3 mm, respectively. Then urine flow
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Fig. 2 Urethra model construction and optimization (a) Schematic illustration of the modeling configuration for urethra. Location of Translational
zone 1, translational zone 2 and prostatic urethra are marked. b deviation between calculated urine flow rate and measured urine flow rate
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rate was recalculated under the intravesical pressure of
80cmH20 (7480.8 Pa).

Results

The demographic data of ten patients was listed in
Table 1. Pressure flow data (Additional file 4: Table S2)
showed that mean maximal urine flow rate(Q.,) was
9.5 ml (7 ~ 12 ml), detrusor pressure at Qmax (Pdet,Qmax)
was 56.7 cmH20 (42 ~ 70 cmH20O), voided volume was
188.5 ml (153 ~ 245 ml). This result indicated that all
patients can be categorized as obstructed according to
Blaivas’ criteria [17]. For each patient, a model was con-
structed using MRI images, and urine flow rate was calcu-
lated. The deviation between calculated and measured flow
rate in each candidate model were charted in a 3D mesh.
Minimal deviation was acquired when dprostate = 1.5 mm,
and maximal deviation was found when dpsostate =3 mm
(Fig. 2b). Initial diameter of prostatic urethra for model 1,
model 2 and model 3 were set to be 1.5 mm.

During voiding, we found that deformation of the
prostate would lead to urethra constriction (Fig. 3a-c),
and its magnitude increased with intravesical pressure.
The constriction of urethra was most prominent near
bladder neck, then loosened gradually and returned to
its initial diameter at prostatic apex. Under each intrave-
sical pressure, urethra diameter of different models was

Table 1 Patient demographics

measure Mean Minimal-maximal
Sample size 10

Age 64.1 59-70

Prostate volume(ml) 923 53.5-115.3
Intravesical protrusion(mm) 867 32-123

Maximal flow rate(ml/s) 95 7-12

Pves at maximal flow rate(Pa) 10,046 8722.89-11271.15

compared. Such comparison leads to an interesting dis-
covery. In region near bladder neck, the widest urethra
was found in model 1 (grade 1 IPP model), followed by
model 2 and model 3(grade 3 IPP model), but this order
was reversed in distal prostatic urethra. Such pattern of
constriction indicated that the variation of cross sec-
tional area for urethra was most prominent in model 3,
and lowest in model 1 (Fig. 3d-f).

Total pressure, defined as P = £V + p, was a combin-
ation of static pressure and dynamic pressure, often used
to evaluate flow efficiency. As urine flow runs from blad-
der to urethra meatus, total pressure decreased due to
urethra resistance. In our simulation, such pressure loss
was most prominent in model 3 (Fig. 4a-c), most of
which occurred in the constricted urethra near bladder
neck. In the other two models, less total pressure was
loss around the bladder neck. For these two models, the
majority of total pressure loss took place in distal pros-
tatic urethra (Fig. 4d-f).

Vorticity, defined as curl of velocity [18]: @ = Vx V,
was used to study the pattern of flow energy dissipation.
Consistent with pattern in total pressure loss, highest mag-
nitude of vorticity for model 3 was found in bladder neck
region while the highest vorticity magnitude for model 1
located in veru montanum and prostatic apex (Fig. 4g).

Flow velocity reached its peak as urine run through
bladder neck, and then it decreased gradually (Fig. 5a-c).
Histograms for flow velocity distribution in sagittal plane
were compared among models (Fig. 5d-f). For each
model, two peaks were found, corresponding to flow
velocity in prostatic urethra and anterior urethra, re-
spectively. Comparison among models indicated that
flow velocity in majority part of model 1 was higher
than the other two models.

Urine flow rate at the urethra meatus in model 1 was
greater than the other two models, and increasing
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Fig. 3 Structure analysis for prostatic deformation (a-c) sagittal cross-section view of contouring figure for deformation. Pves =140 cmH20
(137214 Pa), a grade 1 IPP, b grade 2 IPP, c grade 3 IPP. D-F: the rate of cross-sectional area constriction for 3 models, calculated by dividing the
cross-sectional area of constricted urethra by original cross-sectional area at the same point. d Pves =80 cmH20 (7840.8 Pa), e Pves =110 cmH20
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intravesical pressure would further widen this gap
(Fig. 5g). Then, to simulate obstruction alleviated sce-
nario, prostatic urethra diameter was increased to 2
and 3 mm for the three models. Urine flow rate was
calculated in the diameter increased models under the
pressure of 80 cmH20O (7840.8 Pa). We found that
urine flow rate in all models increased as initial urethra
diameter widen, but at different rates. The gap in flow
rate between model 1 and model 3 went up to 4 ml/s
when the diameter was 2 mm. Then it went down to
1 ml/s when diameter was 3 mm (Fig. 5h).

Discussion

In patient with LUTS symptom, the confounding effect
between prostate volumes, anterior urethra curvature
angle, detrusor muscle contractility and intravesical
prostatic protrusion (IPP) make it hard to understand
IPP’s role with clinical observation. Invasive methods
such as pressure flow study are generally not applicable
to routine clinical practice. Computational fluid dyna-
mic(CFD) was already proved to be an effective method
in investigating flow dynamic in studies regarding airway
flow [19], circulation [20] and urine transport [21]. It is
an attractive alternative to elucidate the role for IPP in
LUTS manifestation.

This is the first study to investigate voiding behavior of
lower urinary tract with fluid structural interaction ana-
lysis (FSI) and provide a scope for better understanding of
prostate deformation. Our results showed that intravesical
pressure above 7840.8 Pa was enough to cause prominent
deformation of the prostate in model 3, which would lead
to constriction of prostatic urethra. Clinical studies
showed that maximum intravesical pressure in LUTS pa-
tient is usually between 8820.9 to 14701.5 Pa [22, 23]. So
it was obvious that for LUTS patient with severe intravesi-
cal prostatic protrusion, intravesical pressure during void-
ing would cause the prostatic deformation which would
lead to severe constriction of prostatic urethra.

Structural analysis showed that the most severe con-
striction in bladder neck and greatest variation of
cross-sectional area for urethra were found in model 3.
The anatomy feature of fascia surrounding the prostate
might shed a light on this. Prostate was attached anteriorly
by pubo-prostatic ligaments, laterally by endopelvic-
fascia, and posteriorly by Denonvilliers’ fascia [24]. As
these supportive structures go superiorly, they fuse
with other fascia, leaving the protruded portion of the
prostate susceptible to radial component of intravesical
pressure. And this may be the underlying cause for the
difference in deformation between three models.
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The variation for urethral cross-sectional area in
model 3 was the main reason for its flow energy dissi-
pation [25]. Such variation was most prominent near
the bladder neck, which coincided with the distribution of
pressure loss and vorticity magnitude. As degree of intra-
vesical protrusion decreased, location for major pressure

loss shifted towards distal part of prostatic urethra, and
the amount of total pressure drop also decreased. Since
factors other than intravesical prostatic protrusion were
same among three models, our results indicated that
intravesical prostatic protrusion could affect the flow effi-
ciency independently.
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Fig. 5 Flow velocity and flow rate analysis. a-c sagittal cross-section view of contouring figure for flow velocity, Pves =140 cmH20, a grade 1 IPP,
b grade 2 IPP, ¢ grade 3 IPP. d-f histogram of flow velocity for three models. d Pves =80 cmH20 (7840.8 Pa), e Pves =110 cmH20 (10781.1 Pa), f
Pves =140 cmH20 (137214 Pa). g flow rate for all models under each particular intravesical pressure in our simulation. h flow rate for models
with increased initial urethra diameter, calculated under the intravesical pressure of 80 cm (7840.8 Pa)

A non-linear relationship between intravesical pres-
sure and maximum urine flow rate (Q,.x) was found in
our simulation. While flow rate in model 1 increased
along with intravesical pressure, it decreased in model
3. This was clinical relevant since patient with LUTS
often tend to strain to pass urine. The results in our
study demonstrated that for patients with grade 3
intravesical prostatic protrusion (IPP), this could fur-
ther aggravate the symptom of weak urine stream,
while the increased intra-abdominal pressure predis-
pose patients to complications including hernia and
hemorrhoids [26, 27].

The simulation result for obstruction alleviated scenario
also suggested that treatment outcome differs between pa-
tients with different grade of intravesical prostatic protru-
sion. Although a major relieve of obstruction could greatly
increase the flow efficiency for all models, the raise in flow
rate for model 3 was only half of that for model 1 when
the relief of obstruction was relatively minor. This coin-
cide with the finding that alpha blocker treatment is more
effective in patients with mild IPP than in those with mod-
erate or severe IPP [28].

Although our work presents some interesting finding,
there are some limitations. All models were constructed
and adjusted based on data acquired from Asian patients
retrospectively which need confirmation in a larger popu-
lation involving African and Caucasian patients. The fu-
ture scope of our research is to confirm the relationship
between FSI results and treatment response through a
larger multicenter study.

Conclusions

3D model of lower urinary tract was constructed from
MRI images and adjusted according to urodynamic data.
Fluid-structural interaction analysis was implemented.
Results demonstrated that intravesical prostatic protru-
sion (IPP) predisposed the prostate to the deformation
caused by intravesical pressure. The constriction of pros-
tatic urethra and increased variation of cross-sectional
area around bladder neck would lead to deterioration of
urine flow efficiency, and compromise the effect of ob-
struction alleviation treatment. This study provided fur-
ther evidence suggesting that IPP influence bladder
outlet obstruction independently, and the flow efficiency
deterioration was more resistant to obstruction allevi-
ation treatment as the degree of IPP increased.
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