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Abstract

Background: In this study we sought if, in their quest to handle hypoxia, prostate tumors express target
hypoxia-associated molecules and their correlation with putative functional genetic polymorphisms.

Methods: Representative areas of prostate carcinoma (n = 51) and of nodular prostate hyperplasia (n = 20)
were analysed for hypoxia-inducible factor 1 alpha (HIF-1α), carbonic anhydrase IX (CAIX), lysyl oxidase (LOX)
and vascular endothelial growth factor (VEGFR2) immunohistochemistry expression using a tissue microarray.
DNA was isolated from peripheral blood and used to genotype functional polymorphisms at the
corresponding genes (HIF1A +1772 C > T, rs11549465; CA9 + 201 A > G; rs2071676; LOX +473 G > A, rs1800449;
KDR – 604 T > C, rs2071559).

Results: Immunohistochemistry analyses disclosed predominance of positive CAIX and VEGFR2 expression in
epithelial cells of prostate carcinomas compared to nodular prostate hyperplasia (P = 0.043 and P = 0.035,
respectively). In addition, the VEGFR2 expression score in prostate epithelial cells was higher in organ-confined
and extra prostatic carcinoma compared to nodular prostate hyperplasia (P = 0.031 and P = 0.004, respectively).
Notably, for LOX protein the immunoreactivity score was significantly higher in organ-confined carcinomas
compared to nodular prostate hyperplasia (P = 0.015). The genotype-phenotype analyses showed higher LOX
staining intensity for carriers of the homozygous LOX +473 G-allele (P = 0.011). Still, carriers of the KDR−604 T-
allele were more prone to have higher VEGFR2 expression in prostate epithelial cells (P < 0.006).

Conclusions: Protein expression of hypoxia markers (VEGFR2, CAIX and LOX) on prostate epithelial cells was
different between malignant and benign prostate disease. Two genetic polymorphisms (LOX +473 G > A and
KDR−604 T > C) were correlated with protein level, accounting for a potential gene-environment effect in the
activation of hypoxia-driven pathways in prostate carcinoma. Further research in larger series is warranted to
validate present findings.
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Background
Prostate carcinoma is the most common cancer and the
second cause of death due to malignancy in men [1]. It is
clinically heterogeneous in aggressiveness, not with stand-
ing comparable clinicopathological features. Currently,
only few biomarkers assist prostate carcinoma risk and
aggressiveness prediction [2].
During tumor growth, malignant cells become pro-

gressively distant from the vasculature, oxygen supply
and nutrients, urging tumor cells to signal to the
microenvironment their needs. The hypoxia inducible
factor 1 alpha (HIF-1α) is a key factor by which
tumors regulate the response to hypoxia, triggering
cascades with effects in angiogenesis, energy metabol-
ism, vasomotor function and on apoptosis and prolif-
eration activity [3–5]. In hypoxia, the HIF-1α/HIF-1β
complex binds hypoxia response elements in promoters of
many downstream target genes, notably vascular endothe-
lial growth factor (VEGF), carbonic anhydrase IX (CAIX),
and lysyl oxidase (LOX) promoters. They have been dem-
onstrated to be up-regulated by hypoxia, ensuing aggressive
and treatment-resistant tumor phenotypes [3, 5–9]. A large
randomized study on radiotherapy and surgical cohorts de-
scribed that markers of tumor hypoxia and angiogenesis
were relevant for localized prostate carcinoma and outcome
of radical treatment [10]. However, further studies at the
genetic and protein levels are required to confirm molecules
in hypoxia pathway as useful markers in prostate carcinoma.
Genetic variants may predispose to prostate carcinoma

and influence the clinical outcome [2, 11, 12]. Single
nucleotide polymorphisms (SNPs) in genes coding for
molecules involved in the response to hypoxia, particu-
larly a functional polymorphism in HIF1A gene at locus
+1772 C > T [13–20], has been studied in association
with prostate carcinoma with controversial results.
Current knowledge suggests that we should consider a
panel of genes in hypoxia pathway, in order to provide
more accurate prediction of the response to tumor hyp-
oxia [21, 22]. Therefore, despite functional SNPs in
genes of pathways downstream of HIF-1α, such as KDR,

LOX and CAIX, have not been studied so far in prostate
carcinoma patients, they merit further research as they
represent key molecules in hypoxia-generated stimulus
in cancer.
Based on the role of hypoxia-associated molecules in

cancer cell biological behaviour and clinical outcome, we
assumed there might be an association, at the genetic and
protein level, between HIF1A, LOX, CA9 and KDR genetic
variants, the protein expression and prostate carcinoma.
Hence, if these polymorphisms modulate protein expres-
sion in response to tumor hypoxia, then the knowledge of
the genotype could aid identify patients at higher risk for
prostate carcinoma and eventually more aggressive disease,
thereby making it possible to undertake chemoprevention
strategies adjusted to the individual characteristics of the
patient.

Methods
Patients
Sixty-seven patients with prostate pathology (n = 49 with
carcinoma, and n = 18 with nodular hyperplasia) and
elective for prostatic surgery [radical prostatectomy and
simple (open) prostatectomy, respectively] at the Porto
Hospital Centre - Sto. António Hospital and Porto
Military Hospital were included in this study. Inclusion
criteria were: 45–75 years of age and for prostate carcin-
oma absence of previous treatments. Clinicopathological
data was collected from clinical files and pathological sta-
ging was determined according to European Association
of Urology guidelines [23] as organ-confined (T1-T2)
(OCPCa) or extra prostatic (T3-T4) (EPCa) disease.
Descriptive data is depicted on Table 1. This study was
conducted with informed written consent by participants
and after approval by the Porto Hospital Centre Ethical
Committee.

DNA extraction and genotyping
At the time of surgery, a venous blood sample was
obtained by forearm venepuncture and the white cell
fraction used to extract DNA (QIAmp DNA Blood Mini

Table 1 Descriptive clinicopathological data of participating patients

BPH OCPCa EPCa

Age at diagnosis, yrs 67.8 ± 8.4 61.3 ± 6.4 63.3 ± 6.3

PSA at diagnosis, ng/mL 5.5 ± 5.1 6.6 ± 2.4 11.9 ± 5.6

Weight of the prostate, g 94.8 ± 32.1 45.9 ± 14.3 56.6 ± 22.7

Gleason Score

<7 − 14 (43.8) 0 (0.0)

≥7 − 18 (56.3) 19 (100)

Percentage of tumor a, % − 15.0 (6.3−20.0) 57.0 (28.8−78.8)

Continuous variables were parametric (Shapiro-Wilk) (data presented as mean ± standard deviation) except for percentage of tumor [data shown as median
(interquartile range)]. Categorical variable is depicted as number of observations and respective frequencies. BPH nodular prostate hyperplasia, EPCa extra
prostatic cancer, OCPCa organ-confined prostate carcinoma, PSA prostate specific antigen
a on prostatectomy specimens
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Kit, Qiagen). Candidate SNPs were selected from the best
evidence from published studies that provide information
on phenotypic risks. Candidate genes involved in key hyp-
oxia pathways were selected. Four putative functional
SNPs in 4 different genes were selected (HIF1A +1772
C > T, rs11549465; CA9 + 201 A >G, rs2071676; LOX
+473 G >A, rs1800449; KDR−604 T > C, rs2071559).
These SNPs were genotyped by Real-Time PCR (TaqMan
allelic discrimination) using pre-designed validated
Taqman assays (Applied Biosystems). Quality control in-
cluded non-template controls in all runs and blind repli-
cate genotypes assessment in 5% of the samples.

Immunohistochemistry and scoring
Formalin–fixed paraffin embedded tissues were morpho-
logically assessed on haematoxylin-eosin stained slides,
before tissue microarray construction as previously de-
scribed [24]. Representative areas of carcinoma and of
nodular hyperplasia were selected and included into tis-
sue arrays: prostate carcinoma (n = 51) and nodular
hyperplasia (n = 20), to analyse HIF-1α, LOX, CAIX and
VEGFR2 immunohistochemistry expression. Slides were
stained with mouse monoclonal antibody to HIF-1α (di-
lution 1:100, NB100-105, Novus Biologicals), and rabbit
polyclonal antibodies to LOX, (dilution 1:100, ab 31238,
Abcam), VEGFR2 (dilution 1:200, ab 2349, Abcam) and
CAIX, (dilution 1:1000, NB100-417, Novus Biologicals)
using the VENTANA BenchMark XT series slide-
staining instrument (with the VENTANA ultraView
DAB IHC detection kit) (VENTANA, Tucson, AZ,
United States). Negative controls omitting the primary
antibody confirmed specificity. Immunohistochemistry
evaluation was independently reviewed by two patholo-
gists (JRV and AC) to assess VEGFR2 expression in car-
cinoma vasculature and prostate epithelial cells
(carcinoma and nodular hyperplasia), and HIF-1α, LOX
and CAIX in prostate epithelial cells (carcinoma and
nodular hyperplasia). Discordant cases were discussed in
order to attain a final consensus. For VEGFR2 different
scoring approaches were evaluated for vessels and epi-
thelial cells as described by Holzer et al. [25], whereas
analysis of CAIX, HIF-1α and LOX expression in pros-
tatic epithelial cells (both in carcinoma and nodular
hyperplasia) were performed according to Smyth et al.
[26], Vergis et al. [10] and Albinger-Hegyi [27], respect-
ively. Briefly, for VEGFR the level of intensity of tumor cell
staining (0, no staining; 1+, weak staining; 2+, moderate
staining; 3+, intense staining) was made in the cytoplasmic
and nuclear compartments simultaneously. The value of
each staining level (0, 1, 2 or 3) was multiplied by the re-
spective percentage of tumor cells at that intensity level. A
total VEGFR2 H-score represents the sum of the three
scores. Regarding LOX, only cytoplasmic immunoreactivity
of epithelial cells was considered positive expression,

whereas staining in the stromal component was not used.
The LOX immunoreactivity score (IRS), was calculated
multiplicating the percentage of positive cells (scored 0 if
0% cells; 1 if 1–20% cells; 2 if 21–40% cells; 3 if 41–60%
cells; 4 if 61–80%; 5 if 81–100% cells) with staining inten-
sity (with 0 if negative; 1 if weak; 2 if moderate; 3 if strong
staining intensity). A representative image of the expres-
sion of each aforementioned protein is shown in Fig. 1.

Statistical analysis
We used means as descriptive statistics for continuous
variables and the Shapiro-Wilk test to assess their depart-
ure from normality. As appropriate, the Mann–Whitney
test and Student t-test were used to compare means
between prostatic disease groups. The Kruskal Wallis
followed by Mann–Whitney two samples tests were used
for analyses of non-parametric variables. The Pearson chi-
square was used to test for association between categorical
variables based on the distribution among diseases,
protein expression or genotype groups. Odds ratios (ORs)
and 95% confidence intervals (95%CIs) were calculated to
evaluate the associations between CAIX expression with
risk for developing organ-confined and extra prostatic
carcinoma. When appropriate, non-parametric Spear-
man’s correlation was computed to assess the statistical
dependence between variables. Analyses were performed
using SPSS 17.0. The datasets analysed during the current
study are available from the corresponding author on
reasonable request.

Results
Association of hypoxia proteins with prostate cancer and
extra-prostatic disease
To assess the prevalence of the key hypoxia-associated
proteins in prostate carcinomas and nodular prostate
hyperplasia, a tissue microarray was constructed for im-
munohistochemistry analyses. Immunohistochemistry
for cytoplasmic HIF-1α demonstrated a non-significant
trend (P = 0.111) for increased proportion of localized
prostate carcinoma patients with positive malignant
prostatic epithelial cells (Fig. 2). CAIX immunoreactivity
was observed in the cytoplasm of epithelial cells and
significant differences were found among disease groups:
CAIX expression was predominantly positive in epithe-
lial cells of carcinomas (P = 0.043) (Fig. 2).
Lysyl oxidase protein expression was found in prostate

epithelial cells of a high percentage of cases, notably in car-
cinomas of patients with organ-confined malignancy
(92.0%), but no significant differences were found among
pathologic groups (P = 0.266) (Fig. 2). Nevertheless, the im-
munoreactivity score (IRS), which combines intensity with
amount of cells positive for LOX in prostate epithelial cells,
was significantly higher in organ-confined carcinomas
compared to nodular prostate hyperplasia (P = 0.015)
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Fig. 2 Frequency of patients with positive staining in benign (BPH) and malignant (organ-confined and extra prostatic disease) epithelial cells.
CAIX, carbonic anhydrase IX; HIF-1α, hypoxia inducible factor - 1 alpha; LOX, lysyl oxidase; VEGFR2, vascular endothelial growth factor receptor 2.
BPH, nodular prostate hyperplasia; EP, extra prostatic disease; OC, organ-confined disease

Fig. 1 Representative microscopy images of staining for hypoxia markers in prostate tissues (MO, 400×). A) HIF-1α - notice the granular
cytoplasmic immunoreactivity of the malignant epithelial cells. In this case, more than 50% of the glands stained. B) LOX - strong and
diffuse nuclear immunoreactivity of the epithelial cells. C) CAIX - note a focal apical cytoplasmic immunoreactivity in epithelial cells. D)
VEGFR2 - moderate nuclear and weak cytoplasmic expression of the epithelial cells
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(Fig. 3). Noteworthy, patients with positive HIF-1α expres-
sion were more prone to have higher immunoreactivity
score for LOX (P = 0.053) (Fig. 4). In addition, a trend
exists for HIF-1α immunostaining grade to be correlated
with LOX IRS expression (Spearman correlation coeffi-
cient, r2 = 0.255, P = 0.055).
Cytoplasmic and nuclear VEGFR2 immunoreactivity

was observed in vascular endothelial cells of approxi-
mately 20% of all samples. The difference between
vascular positivity for VEGFR2 in nodular prostate
hyperplasia and both organ-confined and extra prostatic
carcinomas was not statistically significant (P = 0.971).
As for VEGFR2 staining in epithelial prostate cells,
almost 70% of patients with extra prostatic carcinomas
and approximately half of organ-confined carcinomas
showed tumor cell immunoreactivity for VEGFR2,
whereas only 25% of nodular prostate hyperplasia were
positive (P = 0.035) (Fig. 2). The VEGFR2 expression
scores in the prostate epithelial cells in nodular prostate
hyperplasia (5.6 ± 3.9) compare to either organ-confined
(41.6 ± 16.5) or extra prostatic carcinomas (68.7 ± 28.4)
were statistically different (P = 0.031 and P = 0.004, re-
spectively) (Fig. 5). The VEGFR2 epithelial cell H-score
for samples that were positive for VEGFR2 in the vascu-
lature showed a trend for being higher than those with
negative immunoreactivity status (P = 0.062), indicating
a positive association between the expression of VEGFR2
in the prostatic epithelial cells and the vasculature.

Genotype-phenotype correlation
The genotypic distribution in polymorphisms HIF1A
+1772 C > T, LOX +473 G >A, CA9 + 201 A >G and KDR
−604 T > C is shown in Additional file 1: Table S1. There

was no over-represented genotype in disease groups using
either the additive or recessive models.
There was lack of association between both HIF1A

+1772 C > T and CA9 + 201 A >G genotypes and positiv-
ity or intensity for HIF-1α and CAIX protein expression
(Table 2). Conversely, the LOX immunoreactivity intensity
was significantly higher in individuals carrying the LOX
+473 homozygous G allele (GG, 2.0 ± 0.2) compare to A
carriers (1.1 ± 0.2) (P = 0.011) (Fig. 6), despite no signifi-
cance was achieved for IRS (but with similar trend)
according to LOX genotypes in recessive model. Patients

Fig. 3 Comparison of LOX immunoreactivity score in prostate
epithelial cells of benign and malignant patients. BPH, nodular prostate
hyperplasia; EP, extra prostatic disease; OC, organ-confined disease.
LOX, lysyl oxidase; IRS, immunoreactivity score. Kruskall-Wallis followed
by Mann–Whitney non-parametric tests were used to calculate
differences between prostatic pathologies

Fig. 4 LOX immunoreactivity score by HIF-1α positivity in epithelial
cells. Patients with positive HIF-1α expression are prone to higher LOX
IRS. HIF-1α, hypoxia inducible factor – 1 alpha; LOX, lysyl oxidase. IRS,
immunoreactivity score. Mann–Whitney non-parametric test was used
to calculate differences between positive and negative
HIF-1α expression

Fig. 5 Expression of VEGFR2 (H score) in prostate epithelial cells
according to prostatic diseases. BPH, nodular prostate hyperplasia; EP,
extra prostatic disease; OC, organ-confined disease. VEGFR2, vascular
endothelial growth factor receptor 2. Kruskall-Wallis followed by
Mann–Whitney non-parametric tests were used to calculate differences
between prostatic pathologies
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with at least one KDR−604 T-allele were more prone to
have VEGFR2 expression in prostate epithelial cells but
not in vessels (Table 3). Since the presence of VEGFR2 im-
munoreactivity in epithelial cells, but not in vessels, was
associated with the KDR genetic polymorphism, we
looked for its association with VEGFR2 H-score only in
prostate epithelial cells. The H-score was significantly
higher in cases carrying the T allele (CT, 38.9 ± 13.0 and
TT, 74.7 ± 33.0) compare to homozygous C (1.64 ± 1.0)
(Fig. 7). Both additive and recessive models show that the
allele T was related with increased VEGFR2 epithelial cell
positivity (P = 0.017 and P = 0.006, respectively).
Only data from prostate carcinomas was used to evaluate

if hypoxia proteins associated with Gleason score or prostate
specific antigen (PSA) > 10 ng/mL (Table 4). Trends were
observed for higher VEGFR2 H-score expression in more
undifferentiated carcinomas (Gleason ≥7) (P= 0.099) and in
patients with PSA ≥ 10 ng/mL (P= 0.085), and for positive
CAIX expression in prostate carcinomas from patients with
PSA above 10 ng/mL (P= 0.078).

Discussion
Tumor-associated hypoxia was found in over 70% of
solid malignancies, including prostate carcinoma [3]. It

promotes tumor progression and resistance to therapies
through an effect in reducing apoptosis, and increasing
tumor cell proliferation and neoangiogenesis [5]. How-
ever, the hypoxia-driven HIF-1α upregulation also acti-
vates downstream pathways involved in metabolism (e.g.
CAIX), angiogenesis (e.g. VEGF/VEGFR2 pathway) and
extracellular matrix activity (e.g. LOX), which can
modulate cancer behavior [28].
Experimental studies with prostate cancer cells dem-

onstrated that HIF-1α overexpression was associated
with higher proliferation and metastatic potential [29].
Likewise, a greater expression of HIF-1α has been found
in human prostate carcinomas compared to nodular
prostate hyperplasia [30, 31]. For prostate carcinoma
and other oncologic models, besides the observed higher
amount of HIF-1α in tumors, increased HIF-1α expres-
sion was also associated with prognosis [10, 32–35]. In
the current study, we found a trend for higher HIF-1α
protein expression in prostate carcinomas compared to
nodular prostate hyperplasia, which may be explained by
the limited samples analysed. The use of cytoplasmic
rather than nuclear staining, is unlikely to have influ-
enced our results, since this method has been published
before, reporting positive associations of HIF-1α with
prostate carcinoma and prognosis [10, 30].
Albeit mainly distributed in vascular endothelial cells,

also epithelial cells express VEGFR2 that signals through
signal transducer and activator of transcription 3
(STAT3), mitogen-activated protein kinase (MAPK) or
phosphoinositide-3-kinase (PI3K) intracellular signalling
cascades [36–38]. Unambiguously, the VEGFR2 was
shown to regulate protein kinase B (Akt)/mammalian
target of rapamycin (mTOR)/ribosomal protein S6 kin-
ase beta-1 (P70S6K) signalling pathway in PC-3 prostate
cancer cell line [39]. In the present study, VEGFR2 was
more frequently expressed in epithelial tumor cells of
organ confined or extra prostatic carcinomas than in
nodular prostate hyperplasia, and to lower extent in
endothelial cells. Hence, at least in prostate tissue,

Fig. 6 LOX protein expression (both for immunoreactivity score and staining intensity) according to LOX +473 G > A polymorphism. IRS,
immunoreactivity score; LOX, lysy oxidase; a.u., arbitrary units

Table 2 Association of the genetic polymorphisms in HIF1A
+1772 C > T and CA9 + 201 A > G with HIF-1α and CAIX
immunoreactivity in prostatic epithelial cells

Recessive model (HIF1A and CA9)

HIF-1α expression CC TT/CT P a

Negative 28 (0.76) 9 (0.24)

Positive 10 (0.77) 3 (0.23) 0.928

<50% 32 (0.74) 11 (0.26)

≥50% 6 (0.86) 1 (0.14) 0.516

CAIX expression GG GA/AA

Negative 9 (0.75) 20 (0.69)

Positive 3 (0.25) 9 (0.31) 0.699
a Fisher exact test
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VEGFR2 expression is not specific of endothelial cells; it
is mainly expressed in malignant epithelium where
VEGF can act as a promoter of tumor cell proliferation.
The expression of VEGFR2 in epithelial prostate carcin-
oma cells has been rarely reported, and its role in the
occurrence and development of prostate cancer remains
unclear. Previous immunohistochemistry studies reported
VEGFR2 expression in high-grade prostate intra-epithelial
neoplasia and carcinomas of the prostate [40–42], whereas
gene expression findings evidenced expression of KDR
mRNA in prostate cancer cell lines and a functional im-
pact of using a KDR antisense oligonucleotide in suppress-
ing cell proliferation and promoting apoptosis [43, 44].
The body of past evidences, taken together with present

findings indicates that the distribution of VEGFR2 expres-
sion towards epithelial prostate carcinoma cells supports a
function for VEGF that is not limited to angiogenesis.
Thus, abrogation of VEGFR2 signalling in malignant
epithelial cells may prove an effective therapeutic modality
for the treatment of prostate cancer. At present, two anti-
angiogenic drugs are being tested in the phase III setting

for men with prostate cancer, carbozantinib (a dual
VEGFR2/MET inhibitor) and tasquinimod (down-regula-
tor of HIF-1α), which previously showed beneficial and
encouraging results on phase II trials [45].
Cancer-associated hypoxia switches cell metabolism

towards increased production of acidic metabolites.
However, tumor cells have to adapt to hypoxia and acid-
osis in order to survive. CAIX is a membrane-bound
protein crucial to a wide variety of processes, including
pH regulation in the highly metabolically active malig-
nant cells. Expression of CAIX is associated with tumor
cell hypoxia in a variety of human tumors, including
urologic cancers [46–49]. Carbonic anhydrase IX gene
(CA9) is a target of HIF-1α that is up-regulated in
response to hypoxia [50]. The expression of CAIX in
prostate carcinoma has been rarely reported. CA9
mRNA expression increases reliably following hypoxia
incubation of PC-3 cells [51], although no significant dif-
ferences in CA9 mRNA expression were found when
comparing nodular prostate hyperplasia with prostate
carcinomas [7]. However, other studies reported lack of
CAIX expression in primary prostate carcinoma and
hypothesized that alternative pathway for maintaining
pH balance (e.g. monocarboxylate transporters 2 and 4)
[26, 52, 53] may be more relevant than CAIX.
Our results disclosed increased frequency of cases with

epithelial cell positivity for CAIX expressing in organ con-
fined and extra prostatic carcinomas compared to BPH.
Despite recent concern arisen for the specificity of the
CAIX polyclonal antibody generated against a C-terminal
peptide in detecting CAIX (except when used at high dilu-
tion, in prostate tissues) [54], in this study we used the
antibody at a dilution of 1:1000 and found membrane-
bound staining for CAIX. Therefore, our findings are
likely to reflect reliable expression of CAIX in epithelial
prostate cells. Our findings taken together with reports of
CAIX expression in malignant prostate epithelial cells [7,
51, 55] sustains the need for reconsidering CAIX role in
prostate carcinoma. CAIX may serve as one of the mecha-
nisms by which prostate carcinoma cells regulate extracel-
lular pH and induce cytoplasmic alkalization.

Table 3 Association of the KDR-604 T > C genetic polymorphism with VEGFR2 immunoreactivity in vessels and in prostatic epithelial
cells

Additive model Recessive model

CC CT TT P a CC TT/CT P a

Vessels VEGFR+

Negative 11 (0.26) 22 (0.53) 9 (0.21) 11 (0.26) 31 (0.78)

Positive 3 (0.25) 5 (0.42) 4 (0.33) 0.681 3 (0.25) 9 (0.22) 0.626

Epithelial cells VEGFR+

Negative 11 (0.39) 13 (0.47) 4 (0.14) 11 (0.39) 17 (0.42)

Positive 3 (0.11) 14 (0.54) 9 (0.35) 0.039 3 (0.11) 23 (0.58) 0.030
a Fisher exact test

Fig. 7 VEGFR2 protein expression (H score) according to KDR
−604 T > C polymorphism. KDR, gene coding for VEGFR2 protein;
VEGFR2, vascular endothelial growth factor receptor 2

Fraga et al. BMC Urology  (2017) 17:12 Page 7 of 12



The lysyl oxidase gene (LOX), one of the overexpressed
genes among a tumor hypoxia signature [56, 57], was
shown to be directly regulated by HIF-1α transcription
factor and is essential for hypoxia-induced metastasis and
cancer cell proliferation [58]. Hypoxia-driven cancer cell
invasion is severely impaired when LOX expression or
oxidase activity were inhibited [59]. In prostate tissue we
found that the LOX immunoreactivity score correlated
with HIF-1α expression, thus supporting the regulatory
nature of HIF-1α in LOX expression. Furthermore,
although we have not observed an overrepresentation of
cases with positive LOX expression in carcinomas com-
pared to nodular prostate hyperplasia, the LOX immuno-
reactivity score was significantly higher in organ confined
prostate carcinomas compared to nodular prostate hyper-
plasia. Interestingly, previous reports showed significantly
increased expression of LOX mRNA in prostate carcin-
omas compared to nodular prostate hyperplasia [7],
whereas stronger LOX expression was also observed in
other solid malignancies [27, 60, 61]. LOX is known to
participate in critical biological functions that include cell
migration, cell polarity, epithelial-to-mesenchymal transi-
tion (EMT) and angiogenesis [58] (reviewed in Fraga
et al., 2015) [62], which fits with the increased LOX
expression found in our carcinomas. Altogether, we
suggest the possibility that a HIF-1α/LOX regulatory
mechanism may act in synergy to foster tumor formation
along with the adaptation of tumor cells to hypoxia.
The analysis of protein expression in distinct patho-

logical groups (by stage, differentiation score and PSA
serum levels at diagnosis), which are predictive of pros-
tate cancer aggressiveness, showed at most only trends
for increased expression of VEGFR2 in carcinomas with
Gleason >7 or patients with PSA > 10 ng/mL, and of
CAIX in patients with PSA > 10 ng/mL. These findings
indicate relevant clues but require further studies.
The genotypic distributions for the putative functional

target SNPs in HIF1A, LOX, CA9 and KDR were similar

between nodular prostate hyperplasia and prostate
carcinomas. We might have hypothesized that carriers of
variant alleles are prone to be more susceptible to have
cancer, but the underpowered sample size limits conclu-
sions regarding genetic association for these SNPs.
Nevertheless, it is expected that only the combination of
several SNPs within pathways or mechanisms may have
significant impact in the association with complex
diseases as prostate carcinoma. Further studies are
warranted to evaluate the predictive/prognostic value of
these genetic polymorphisms in prostate cancer.
In this study, evaluation of protein expression

according to SNPs in the respective coding genes dis-
closed a genotype-phenotype effect for the LOX and
KDR SNPs, but no functional validation at the protein
level was observed for the studied HIF1A and CA9
SNPs. In the HIF1A gene, a C-to-T substitution at
locus +1772 (rs11549465) results in non-synonymous
proline-by-serine aminoacid substitution at codon
582. Association studies of this SNP with prostate
carcinoma risk and with microvessel density, yielded
conflicting results [13, 16, 19, 20, 63–65]. This SNP
localizes in the oxygen-dependent domain of the gene
where the variant allele was shown to stabilize HIF1A
mRNA and enhance HIF1A transcriptional activity
[64]. In our study there were no differences in HIF-
1α protein expression according to the HIF1A +1772
C > T genotypes as reported previously in localised
prostatic carcinomas [16]. As we measured HIF-1α
protein levels and it is known that HIF1A is subjected
to post-transcriptional and post-translational regula-
tion [66], this SNP may indeed influence mRNA tran-
scription that is not reflected in protein expression.
The low frequency of T homozygous genotype in our
sample (only 2 cases carried TT genotype) may have
influenced statistical power, since the HIF-1α protein
and mRNA overexpression have been associated with
the HIF1A +1772 TT [14, 67, 68].

Table 4 Expression of proteins from hypoxia pathways in prostate cancer patients, by Gleason grade and PSA value

Gleason grade (n = 38) PSA at diagnosis (n = 36)

<7 ≥7 P <10 ≥10 P

VEGFR2 H-scorea 30.9 ± 24.7 60.1 ± 17.9 0.099 30.2 ± 1.2 80.0 ± 33.5 0.085

LOX immunoreactivity scorea 10.2 ± 1.6 7.6 ± 1.1 0.184 9.2 ± 1.1 6.6 ± 1.8 0.242

HIF-1α expressionb

Negative 6 (0.50) 19 (0.73) 17 (0.65) 8 (0.80) 0.335c

Positive 6 (0.50) 7 (0.27) 0.163 9 (0.35) 2 (0.20)

CAIX expressionb

Negative 10 (0.83) 15 (0.58) 19 (0.73) 5 (0.50)

Positive 2 (0.17) 11 (0.42) 0.117 c 7 (0.27) 5 (0.50) 0.078

PSA prostate specific antigen, VEGFR2 vascular endothelial growth factor receptor 2, LOX lysyl oxidase, HIF1a hypoxia inducible factor 1 alpha, CAIX carbonic
anhydrase IX
a Kruskal Wallis and Mann–Whitney U tests for VEGFR2 H-score in epithelial cells; b Chi-square test.c Fisher exact test
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A functional genetic variant on KDR gene that codifies
for VEGFR2 is located in the promoter region (−604,
rs2071559), where a T-to-C substitution occurs. Preceding
in vitro luciferase assays showed that the C-allele was as-
sociated with lower transcription activity than T-allele,
whereas serum VEGFR2 levels were significantly lower in
CC versus TT carriers [69]. Interestingly, we found that
CT and TT carriers had significantly increased VEGFR2
expression in prostate epithelial cells. We postulate that
this SNP might prove useful for predictive and/or prog-
nostic evaluations in prostate carcinoma. Studies in colo-
rectal cancer reported association of this SNP in KDR
with susceptibility and recurrence [70, 71], whereas, to the
best of our knowledge, no studies using this SNP were
conducted in prostate carcinoma patients. Likewise, it is
expected that this SNP might increase susceptibility to
prostate cancer by upregulating the number of available
VEGFR2 proteins in malignant cells.
A SNP in exon 1 of CA9 gene is located at locus +201

(rs2071676), where an A-to-G substitution leads to a
change of valine-by-methionine in codon 33. Although
we observed an overrepresentation of CAIX positive im-
munoreactivity in prostate carcinoma compared to BPH,
the nonsynonymous SNP in CA9 + 201 were unable to
explain variations in the levels of CAIX protein expres-
sion in the prostatic tissue. Likewise, a recent report de-
scribed lack of association between the CA9 + 201 SNP
with CAIX protein expression in renal cell carcinoma
[72]. These findings may suggest that lack of influence
of this SNP in protein expression, even though the po-
tential molecular structure modifications of this nonsy-
nonymous substitution (valine to methionine) in CAIX
protein activity remains to be confirmed. In fact, genetic
association studies that included the CA9 + 201 A > G
polymorphism showed neither risk for renal cell carcin-
oma [72] nor for oral squamous cell carcinoma [73].
Noteworthy, the G-allele was associated with lymph
node metastasis in oral cancer and represented increased
risk for cancer when combined into a haplotype with
other two SNPs in this gene [73]. Furthermore, another
SNP in CA9 (rs12553173) was independently associated
with improved overall survival and greater likelihood of
response to therapy in renal cell carcinoma [72], thus
warranting further functional analysis. In our study,
although we are aware that haplotype analyses can be
expedite over analysis of individual SNPs for detecting
an association between alleles and a disease phenotype,
the small size sample prevented the consideration of
such evaluation.
The LOX gene is translated and secreted as a pro-

enzyme (Pro-LOX), and then processed to a functional
enzyme (LOX) and a propeptide (LOX-PP) [74, 75].
While LOX-PP was described as a Ras tumor suppressor,
reversing mesenchymal tumor cells to a more epithelial

phenotype [76–78], the LOX enzyme was found to facili-
tate a more migratory and invasive phenotype during
breast cancer progression [58, 79]. We studied a SNP in
LOX gene that has been identified at locus +473
(rs1800449), presenting a G-to-A substitution that cause
an aminoacid substitution arginine-by-glutamine in
codon 158. This SNP located in a highly conserved
region within LOX-PP has been associated with attenu-
ated ability of LOX-PP to oppose the effects of LOX,
resulting in tumor cell invasive phenotype. Functional
studies revealed that the A-allele decreases the protect-
ive capacity of LOX-PP, while increasing the Pro-LOX-
associated invasive ability of tumor cells [78]. When
evaluating LOX immunoreactivity and expression inten-
sity by immunohistochemistry in prostate tissues, we
found it significantly lower in carriers of the LOX +473
A-allele. Indeed, LOX A-carriers disclosed decreased
LOX protein expression in the nucleus of prostate
epithelial cells.
The complex nature of LOX protein domain structure

and biological functions makes noticeable that it can act as
both a tumor suppressor and a metastasis promoter gene
in cancer [80]. Under hypoxic conditions, the increased ex-
pression of LOX enzyme correlates with tumor invasive-
ness [81, 82]. In the present study, we found that lysyl
oxidase was present primarily intracellular in the nucleus
of epithelial cells, which fits with other reports asserting
that this enzyme may have important functions in
secretory cells, either as catalyser of histones in the nucleus
or in association with cytoskeletal proteins at the cyto-
plasm [83, 84]. Thus, our findings seem to suggest a wider
variety of functions for LOX in prostate epithelial cells, be-
yond those related to cross-link formation in collagen and
elastin, which merit further research. We hypothesize that
the trafficking of LOX towards inside the cell or a specific
cell compartment may be subordinated to the structural
molecular characteristics and folding of the protein, which
could be determined by LOX +473 G >A polymorphism.
Further studies should clarify the meaning of increased
nuclear LOX intensity for PCa development.
Our endeavour to study the genotype-phenotype cor-

relation in key hypoxia markers and its association with
prostate cancer yielded novel and interesting findings,
nevertheless our results should be interpreted in the
context of several potential limitations. Sample size was
a major issue as conclusions were impracticable for
genetic association analysis and limited for genotype-
phenotype inferences. Nevertheless, considering the
hypothesis-generating nature of this study, we report
findings that provide important clues to further work in
larger samples. The use of tissue microarrays for immu-
nohistochemical evaluation has been subject of concern
mainly due to limited sample of diagnostic tissue,
although in our series the representative tumor sections
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were adequately selected by an experienced pathologist.
The comparison of hypoxia markers between patients
with benign and malignant prostate disease might
attenuate differences since it is known that hypoxia is
altered in cancer but also in benign hyperproliferative
diseases. The group of benign prostate disease seemed
adequate for several order of reasons: 1) the diagnosis
was contemporary with that of cancers; 2) their
advanced age at diagnosis allowed matching with elderly
prostate cancer patients; 3) all patients underwent digital
rectal examination, PSA testing and prostate needle
biopsy, making the possibility of crossover remote, and
4) most men develop nodular prostate hyperplasia or
chronic prostatitis by the 7th–8th decades of life,
making it normal in men of that age to carry benign
prostatic disease.

Conclusions
Prostate carcinoma triggers an increase in hypoxia, which
regulates HIF1A that in turn impacts downstream the ex-
pression of LOX, CAIX and VEGFR2 in tumor cells. In
this study we observed that the inherited genetic variants
in LOX and KDR seem to modulate the expression of
LOX and VEGFR2 in carcinoma cells, supporting a gene-
tumor microenvironment interaction in the activation of
hypoxia-driven pathways in prostate carcinoma. Results
presented here warrant further research in larger samples
in order to evaluate the predictive and prognostic value of
KDR and LOX SNPs in prostate carcinoma.
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