Varicocele has been considered to be closely associated with male infertility, but involved mechanism is not yet completely understood. Difficult tissue acquisition from human, forbidden invasive experiment in human and indefinite patient characteristics made the mechanism study in human is impossible. Thus animal models have been playing an important role in studying pathophysiology of varicocele.
Initially Kay and associates induced varicocele in rhesus monkey by partially ligating the left renal vein [9]. The first animal model reported decreased sperm counts and bilateral elevated testicular temperature. Harisson and co-workers conducted a similar animal model and reported bilateral impairment of lymphatic drainage and decreased testicular blood flow [10]. Subsequently Saypol et al extended the monkey model to dogs, followed by Cockett et al. and Dandia et al. [8,11,12] But in above animal models the reversion of abnormalities in semen characteristics and reduction of dilation degree in spermatic vein has occurred. Also, in 1981 Saypol et al introduced rat experimental model by partially ligating the left renal vein [8]. Since then experimental rat varicocele has become the most common animal model because of similar venous anatomy between human and rat when left varicocele occurs.
Even so, vascular variation adds indefinite factors to successful development of rat varicocele model. Similar to human anatomy, experimental rat varicocele accompanies dilation of the pampiniform plexus, the spermatic vein, and the collaterals leading to the iliac. In most rats more thinner internal spermatic vein from the pampiniform plexus drains into the left renal vein while more thicker branch vein into left common iliac. This pelvic venous drainage can negate the increased venous pressure proximal to partial occlusion of the left renal vein. Thus in this study we ligated the branch veins to the left common iliac besides partially ligating left renal vein. Such a modification has been demonstrated to be important for success of varicocele induction in rats by Turner et al and Najari et al. [7,13]
Although experimental rat varicocele model is widely used, rare report has referred to the complications of developing rat varicocele model. In this study we found success rate of rat varicocele model with conventional technique is only 85%. Except for variation of veinous anatomy, complication may be also the main factor. Vascular injury and pyonephrosis are the most common complications. Vascular injury often happens just when ligating the left renal vein or branches to left common iliac vein. Inadvertent puncture or tear of the vein from blind dissection behind the vein is the possible reason. Pyonephrosis is mainly ascribed to accident ligation of ureter adjacent to spermatic vein, followed by obstructive hydronephrosis and infection.
Comparison of the mean left internal spermatic vein diameter and sperm parameters between two groups shows no significant difference, but there was less complication and higher success in Group B. Addition of microsurgery to conventional technique results in less invasiveness in developing model. Operating microscope with 16× magnification will provide clear and enlarged visual field; and, combined with microsurgical instruments, make the dissection of blood vessel, even tiny branch, easy and safe. Moreover, microsurgical modeling of rat varicocele can easily identify the ureter adjacent to left internal spermatic vein and make ligation of tiny branch to common iliac vein with 10-zero nylon possible, which avoids injuring the ureter.
There are some limitations in this study. Microsurgical rat model needs special training and instruments, which are not commonly used in laboratories. Although the effect of our models on sperm parameters has been referred to in this study, the models as the platform of studying infertility are still further evaluated in the future study.