Over the past few decades, the introduction of the serum PSA test has been associated with a greater than 50% significant reduction in PCa mortality rates in many areas around the world [5]. It is believed that this downward mortality path is attributed mainly to the PSA-based screening programs and improved treatment strategies. However, despite this decline in PCa specific mortality rates since the early 1990s, controversy about the harms and benefits of PSA based screening still exist [16].
The harms of PSA screening are well known including overdiagnosis and overtreatment. The USPSTF and CTFPHC recommendations against PSA screening were based mainly on three significant randomized controlled trials, namely, the Prostate, Lung, Colon and Ovarian (PLCO) screening trial, the European Randomized Study of Screening for Prostate Cancer (ERSPC) and the Goteborg trial [6, 7, 17].
The task forces have a significant effect on the practice patterns of primary and specialty healthcare professionals, as seen with primary care providers with whom the decision to offer screening usually lies [18].
Following the draft guidelines in October 2011 and the official recommendations against PSA screening in May 2012 in US and October 2014 in Canada, multiple studies demonstrated a significant decrease in PSA screening. Shoag et al. [11] used the US National Ambulatory Medical Care Survey (NAMCS) data and recently reported a relative 64% decrease in DRE and a 39% decrease in PSA testing after the recommendations. The decrease was significant among men 55 to 69 years old, where the number of visits in which DRE and PSA testing were performed decreased 65% and 39%, respectively (p < 0.001).
Drazer et al. [12] reported a significant decline in PSA-based screening after the recommendations, using the US National Health Interview Survey (NHIS) data, with the largest decline among men aged 50–59 years, where relative screening rates decreased by 25% from 2010 to 2013. Similarly, Jemal et al. [13] showed a decrease in the PSA screening rates by 18% between 2010 and 2013 and as in the previous reports, the highest decline was seen among men aged 50–74 years.
On the other hand, Hutchinson et al. [19] did not identify a significant change in the use of PSA-based screening as measured by the total annual number of resultant PSA examinations in their single-center analysis. However, they reported that patients were referred at progressively higher average PSA levels. Also, Rahbar et al. [20] in their recent update of their already published data (14) extended the previous data analysis with additional years to determine if the downward trend continued past the immediate response to the recommendation, and they showed that from 2013 to 2015 there was a non-significant decrease in PSA screening (only 0.4%). According to them, the absence of a change between these years might highlight the contrasting recommendations by different guideline panels regarding the use of this test.
In our study we present the finding of a significant decline in prostate biopsy volume following the USPSTF and CTFPHC recommendations, where we found an average annual decrease of 10.6%. Our results matched a recent report from a community-based urology practice, where Gaylis et al. [21] examined a total of 3915 prostate biopsies performed during 4 years, with 1581 (40.4%) of these prostate biopsies performed in men referred for newly elevated PSA. They found a 22.8% reduction in biopsies performed in newly referred men. Also in Canada, Bhindi et al. [22] conducted a time series analysis during 2008 to 2013 of prostate biopsies performed at University Health Network in Toronto, and reported a decline in the median number of biopsies performed per month from 58.0 (IQR 54.5–63.0) before the USPSTF recommendations to 35.5 (IQR 27.0–41.0) afterward (p = 0.003). Likewise, Banerji et al. [23] assessed the number of needle biopsies done at an academic institution in the US during the 30-month period before and after the USPSTF recommendation and reported a 31% decrease in the absolute number of biopsies. Furthermore, Gershman et al. [24], showed that prostate biopsy rates dropped by 33% from 64.1 to 42.8 per 100,000 person/months from 2005 to 2014, with the greatest decrease following the 2012 USPSTF recommendation (− 13.8; 95% CI, − 21.0 to − 6.7; p < 0.001).
Halpern et al. [25] conducted a US national study across academic and community practice settings and health plans to evaluate variations in prostate biopsy volumes from 2009 through 2015, they demonstrated geographic variation in prostate biopsy volumes and an overall decrease in prostate biopsies after USPSTF recommendation, the median biopsy volume per urologist significantly decreased from 29 to 21 (IQR 12–34; p < 0.001), and the total number of annual biopsies decreased by 12.7%. After adjustment for practice and physician characteristics, they reported an overall decrease of 28.7% in biopsy volume following 2012. The greatest decrease in biopsy volume was observed in men with abnormal PSA, whereas biopsy volume in men under surveillance for confirmed PCa significantly increased by 28.8%.
Conversely, Misra-Hebert et al. [26] in their study conducted over 160,211 men aged ≥40 years with at least one visit to a primary care clinic during the years 2007–2014, reported higher rates of first prostate biopsy in men who were screened with a PSA test, especially for men with an increased risk of PCa (African Americans and men with positive family history). However, when they used all men aged ≥40 years with a primary care clinic visit each year as the denominator, overall yearly rates of prostate biopsy were similar between 2007 and 2014 and for men ≥70 years, biopsy rates decreased in 2014 in comparison to 2007.
In our study, PSA assessments over time revealed that for men presenting for prostate biopsy, the median PSA values showed a rising trend after recommendations. This trend was significant for both USPSTF and CTFPHC recommendations (p = 0.0007 and 0.037, respectively). In addition the percentage of men presenting with PSA value > 10 ng/ml was significantly higher in the post recommendation era (p < .0001 and 0.011, respectively). These findings are consistent with previous two studies [21, 23], where one reported that post-USPSTF patients had a higher median PSA (p < 0.001), and was significantly more likely to have a PSA between 6.1 and 10 ng/ml (P = 0.019) or 10.1 and 20 ng/ml (p = 0.002) than the pre-USPSTF patients. The second study reported that the proportion of men presenting with PSA > 10 ng/ml increased from 28.1 to 36.8% (p = 0.009).
Among our cohort, we found no significant changes in the relative PCa detection rate (33.1% to 37.6%) over the study period. However, we noted worse pathological outcomes in terms of slight higher absolute numbers and rates of Gleason grades [8,9,10] and higher risk classification PCa cases diagnosed in the years after the recommendations. Similarly, Hu et al. [27] Using the most recent Surveillance, Epidemiology, and End Results (SEER) release, identified 1,107,111 men 40 years or older diagnosed with PCa from 2004 to 2013 and reported increase in the percentage presenting with intermediate and high-grade PCa, from 46.3 to 56.4% (p < .01), in men younger than 75 years, and increase in the proportion of men presenting with distant metastases from 2.7 to 4.0% (p < .01). Bhindi et al. [22] in their study also reported no significant differences in relative cancer detection rates in the year after versus the year before USPSTF recommendations, but In contrast with our results, they found significant decrease (p < 0.001) in the absolute rates of cancer detection after the USPSTF recommendation statement, where the median number of Gleason 7–10 PCa detected per month decreased from 17.5 (IQR 14.5–21.5) to 10.0 (IQR 9.0–12.0), however, their report was limited to only one year after the recommendation.
Although our results showed higher rates of high-risk PCa after the recommendation, the actual absolute number was a little higher, which may be explained by the pattern of less aggressive screening during the years after the recommendations, which led to decreased absolute numbers and rates of low grade PCa detected during screening.
Barocas et al. [28] investigated the incident diagnoses of PCa after the USPSTF draft recommendation, based on US national cancer database, they reported 28% decrease in the incidence, they noted that the monthly PCa diagnoses decreased by 1363 cases (12.2%, p < 0.01) in the month after the USPSTF draft and continued to decrease by 164 cases per month relative to baseline (− 1.8%, p < 0.01). Jemal et al. [13] reported more specific decreases in the early-stage PCa incidence following the 2012 USPSTF recommendations. The largest decrease occurred between 2011 and 2012, from 498.3 to 416.2 per 100,000 men aged 50 years and older. In addition they recently updated their results [29] and reported a continuing decline in incidence rates for early-stage PCa in men aged over 50 years, the decrease rate was lower in 2012–2013 than that from 2011 to 2012 (6% versus 19%).
Of note, recently the US task force initiated a new update process of the 2012 recommendation on PCa screening and in April 2017 they issued a new draft recommendation, that was published as final recommendation as of May 2018 [30], proposing the following modification based on additional evidence published since the 2012 recommendation: - For men aged 55–69: The decision about whether to be screened for PCa should be an individual one. The USPSTF recommends that clinicians inform men ages 55 to 69 years about the potential benefits and harms of PSA–based screening for PCa. (Grade C).
Our study has some limitations including its retrospective nature, single center experience (related to local network of primary care physician), and being an observational study that cannot confirm causality. Despite these limitations, the strengths of our study include being the first study to assess and report on prostate biopsy outcomes after both (the US and Canadian) recommendations, the fair number of patients included and the longer follow up time after the recommendations. We believe that our study results with the results of others could be informative to the health policy makers.