Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.
Article
CAS
Google Scholar
Harris ID, Fronczak C, Roth L, Meacham RB. Fertility and the Aging Male. Rev Urol. 2011;13:e184–90.
PubMed
PubMed Central
Google Scholar
Morris G, Mavrelos D, Theodorou E, Campbell-Forde M, Cansfield D, Yasmin E, et al. Effect of paternal age on outcomes in assisted reproductive technology cycles: systematic review and meta-analysis. F&S Reviews. 2020;1:16–34.
Article
Google Scholar
Bertoldo MJ, Listijono DR, Ho W-HJ, Riepsamen AH, Goss DM, Richani D, et al. NAD + Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep. 2020;30:1670–81.e7.
Article
CAS
Google Scholar
Yang Q, Cong L, Wang Y, Luo X, Li H, Wang H, et al. Increasing ovarian NAD + levels improve mitochondrial functions and reverse ovarian aging. Free Radic Biol Med. 2020;156:1–10.
Article
CAS
Google Scholar
Schultz MB, Sinclair DA. Why NAD + Declines during Aging: It’s Destroyed. Cell Metab. 2016;23:965–6.
Article
CAS
Google Scholar
Verdin E. NAD + in aging, metabolism, and neurodegeneration. Science. 2015;350:1208–13.
Article
CAS
Google Scholar
McReynolds MR, Chellappa K, Baur JA. Age-related NAD + decline. Exp Gerontol. 2020;134:110888.
Article
CAS
Google Scholar
Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26:34.
Article
Google Scholar
Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L, et al. Declining NAD + Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell. 2013;155:1624–38.
Article
CAS
Google Scholar
Chen W, Zhang Z, Chang C, Yang Z, Wang P, Fu H, et al. A bioenergetic shift is required for spermatogonial differentiation. Cell Discov. 2020;6:1–17.
Article
CAS
Google Scholar
Hu YA, Lu JC, Shao Y, Huang YF, Lü NQ. Comparison of the semen analysis results obtained from two branded computer-aided sperm analysis systems. Andrologia. 2013;45:315–8.
Article
CAS
Google Scholar
World Health Organization. WHO laboratory manual for the examination and processing of human semen. 2010;:271.
Schwartz D, Mayaux M-J, Spira A, Moscato M-L, Jouannet P, Czyglik F, et al. Semen characteristics as a function of age in 833 fertile men. Fertil Steril. 1983;39:530–5.
Article
CAS
Google Scholar
Fisch H, Goluboff ET, Olson JH, Feldshuh J, Broder SJ, Barad DH. Semen analyses in 1,283 men from the United States over a 25-year period: no decline in quality. Fertil Steril. 1996;65:1009–14.
Article
CAS
Google Scholar
Sloter E, Schmid TE, Marchetti F, Eskenazi B, Nath J, Wyrobek AJ. Quantitative effects of male age on sperm motion. Hum Reprod. 2006;21:2868–75.
Article
CAS
Google Scholar
Cocuzza M, Athayde KS, Agarwal A, Sharma R, Pagani R, Lucon AM, et al. Age-Related Increase of Reactive Oxygen Species in Neat Semen in Healthy Fertile Men. Urology. 2008;71:490–4.
Article
Google Scholar
Zubkova EV, Robaire B. Effects of ageing on spermatozoal chromatin and its sensitivity to in vivo and in vitro oxidative challenge in the Brown Norway rat. Hum Reprod. 2006;21:2901–10.
Article
CAS
Google Scholar
Hammiche F, Laven JSE, Boxmeer JC, Dohle GR, Steegers EP, Steegers-Theunissen RPM. Sperm quality decline among men below 60 years of age undergoing IVF or ICSI treatment. J Androl. 2011;32:70–6.
Article
CAS
Google Scholar
Vannini N, Campos V, Girotra M, Trachsel V, Rojas-Sutterlin S, Tratwal J, et al. The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance. Cell Stem Cell. 2019;24:405–18.e7.
Article
CAS
Google Scholar
Zuckerman S, Baker TG. The development of the ovary and the process of oogenesis. The ovary. 1977;1:41–67.
Google Scholar
Youngson NA, Uddin GM, Das A, Martinez C, Connaughton HS, Whiting S, et al. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction. 2019;158:171–81.
Article
CAS
Google Scholar
Shukla S, Jha RK, Laloraya M, Kumar PG. Identification of non-mitochondrial NADPH oxidase and the spatio-temporal organization of its components in mouse spermatozoa. Biochem Biophys Res Commun. 2005;331:476–83.
Article
CAS
Google Scholar
Frederick DW, Loro E, Liu L, Davila A, Chellappa K, Silverman IM, et al. Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle. Cell Metabol. 2016;24:269–82.
Article
CAS
Google Scholar
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem. 2002;277:45099–107.
Article
CAS
Google Scholar
Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R. Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE. 2008;3:e1571.
Article
Google Scholar