Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.
Article
PubMed
Google Scholar
Leal J, Luengo-Fernandez R, Sullivan R, Witjes JA. Economic burden of bladder Cancer across the European Union. Eur Urol. 2016;69(3):438–47. https://doi.org/10.1016/j.eururo.2015.10.024.
Article
PubMed
Google Scholar
Compérat E, Gontero P, Mostafid AH, Palou J, Van Rhijn BWG, Rouprêt M, et al. Non-muscle-invasive Bladder Cancer (TaT1 and CIS) EAU Guidelines; 2018. p. 1–48. Retrieved from http://uroweb.org/wp-content/uploads/EAU-Guidelines-Non-muscle-invasive-Bladder-Cancer-TaT1-CIS-2018.pdf.
Google Scholar
Daneshmand S, Konety BR. American urological association (AUA) guideline American urological association non-muscle invasive bladder Cancer. AUA Clinical Guidelines, (April); 2016. p. 1–45.
Google Scholar
Burke DM, Shackley DC, O’Reilly PH. The community-based morbidity of flexible cystoscopy. BJU Int. 2002;89(4):347–9. https://doi.org/10.1046/j.1464-4096.2001.01899.x.
Article
CAS
PubMed
Google Scholar
Karakiewicz PI, Benayoun S, Zippe C, Lüdecke G, Boman H, Sanchez-Carbayo M, et al. Institutional variability in the accuracy of urinary cytology for predicting recurrence of transitional cell carcinoma of the bladder. BJU Int. 2006;97(5):997–1001. https://doi.org/10.1111/j.1464-410X.2006.06036.x.
Article
PubMed
Google Scholar
Lotan Y, Roehrborn CG. Sensitivity and specificity of commonly available bladder tumor markers versus cytology: results of a comprehensive literature review and meta-analyses. Urology. 2003;61(1):109–18. https://doi.org/10.1016/S0090-4295(02)02136-2.
Article
PubMed
Google Scholar
Bensalah K, Montorsi F, Shariat SF. Challenges of Cancer biomarker profiling {a figure is presented}. Eur Urol. 2007;52(6):1601–9. https://doi.org/10.1016/j.eururo.2007.09.036.
Article
PubMed
Google Scholar
Kamat AM, Karakiewicz PI, Xylinas E, Hegarty PK, Hegarty N, Jenkins LC, et al. ICUD-EAU international consultation on bladder Cancer 2012: screening, diagnosis, and molecular markers. Eur Urol. 2012;63(2013):4–15.
PubMed
Google Scholar
Altman DG, McShane LM, Sauerbrei W, Taube SE, Cavenagh MM. REMARK (REporting recommendations for tumor MARKer prognostic studies). Guidelines for Reporting Health Research: A User’s Manual. 2014:241–9. https://doi.org/10.1002/9781118715598.ch23.
Whiting, Penny F. ; Rutjes, Anne W.S.; Westwood, Marie E. ; Mallett, Susan ; Deeks, Jonathan J. ; Reitsma, Johannes B., ; Leeflang, Mariska M.G. ; Sterne, Jonathan A.C. ; Bossuyt, P. M. M. ; (2011). QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Internal Med Res RepMethods, 155(4), 529–536.
Google Scholar
Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. The BMJ. 2020;368:1–6. https://doi.org/10.1136/bmj.l6890.
Article
Google Scholar
Rouprêt M, Hupertan V, Yates DR, Comperat E, Catto JWF, Meuth M, et al. A comparison of the performance of microsatellite and methylation urine analysis for predicting the recurrence of urothelial cell carcinoma, and definition of a set of markers by Bayesian network analysis. BJU Int. 2008;101(11):1448–53. https://doi.org/10.1111/j.1464-410X.2008.07591.x.
Article
PubMed
Google Scholar
van der Aa MNM, Zwarthoff EC, Steyerberg EW, Boogaard MW, Nijsen Y, van der Keur KA, et al. Microsatellite analysis of voided-urine samples for surveillance of low-grade non-muscle-invasive Urothelial carcinoma: feasibility and clinical utility in a prospective multicenter study (cost-effectiveness of follow-up of urinary bladder Cancer trial C). Eur Urol. 2009;55(3):659–68. https://doi.org/10.1016/j.eururo.2008.05.001.
Article
PubMed
Google Scholar
Zuiverloon TCM, Van Der Aa MNM, Van Der Kwast TH, Steyerberg EW, Lingsma HF, Bangma CH, Zwarthoff EC. Fibroblast growth factor receptor 3 mutation analysis on voided urine for surveillance of patients with low-grade non-muscle - invasive bladder cancer. Clin Cancer Res. 2010;16(11):3011–8. https://doi.org/10.1158/1078-0432.CCR-09-3013.
Article
CAS
PubMed
Google Scholar
Reinert T, Borre M, Christiansen A, Hermann GG, Ørntoft TF, Dyrskjøt L. Diagnosis of bladder Cancer recurrence based on urinary levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 Hypermethylation. PLoS One. 2012;7(10):1–9. https://doi.org/10.1371/journal.pone.0046297.
Article
CAS
Google Scholar
Zuiverloon TCM, Beukers W, Van Der Keur KA, Munoz JR, Bangma CH, Lingsma HF, et al. A methylation assay for the detection of non-muscle-invasive bladder cancer (NMIBC) recurrences in voided urine. BJU Int. 2012;109(6):941–8. https://doi.org/10.1111/j.1464-410X.2011.10428.x.
Article
CAS
PubMed
Google Scholar
Allory Y, Beukers W, Sagrera A, Flández M, Marqués M, Márquez M, et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur Urol. 2014;65(2):360–6. https://doi.org/10.1016/j.eururo.2013.08.052.
Article
CAS
PubMed
Google Scholar
Abern MR, Owusu R, Inman BA. Clinical performance and utility of a DNA methylation urine test for bladder cancer. Urologic Oncol. 2014;32(1):51.e21–6. https://doi.org/10.1016/j.urolonc.2013.08.003.
Article
CAS
Google Scholar
Su S-F, de Castro Abreu AL, Chihara Y, Tsai Y, Andreu-Vieyra C, Daneshmand S, et al. A panel of three markers hyper- and Hypomethylated in urine sediments accurately predicts bladder Cancer recurrence. Clin Cancer Res. 2014;20(7):1978–89. https://doi.org/10.1158/1078-0432.CCR-13-2637.
Article
CAS
PubMed
Google Scholar
Fantony JJ, Abern MR, Gopalakrishna A, Owusu R, Jack Tay K, Lance RS, Inman BA. Multi-institutional external validation of urinary TWIST1 and NID2 methylation as a diagnostic test for bladder cancer. Urologic Oncol. 2015;33(9):387.e1–6. https://doi.org/10.1016/j.urolonc.2015.04.014.
Article
CAS
Google Scholar
Beukers W, van der Keur KA, Kandimalla R, Vergouwe Y, Steyerberg EW, Boormans JL, et al. FGFR3, TERT and OTX1 as a urinary biomarker combination for surveillance of patients with bladder Cancer in a large prospective multicenter study. J Urol. 2017;197(6):1410–8. https://doi.org/10.1016/j.juro.2016.12.096.
Article
CAS
PubMed
Google Scholar
Roperch JP, Grandchamp B, Desgrandchamps F, Mongiat-Artus P, Ravery V, Ouzaid I, et al. Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer. BMC Cancer. 2016;16(1):1–9. https://doi.org/10.1186/s12885-016-2748-5.
Article
CAS
Google Scholar
van der Heijden AG, Mengual L, Ingelmo-Torres M, Lozano JJ, van Rijt-van de Westerlo CCM, Baixauli M, et al. Urine cell-based DNA methylation classifier for monitoring bladder cancer. Clin Epigenetics. 2018;10(1):1–10. https://doi.org/10.1186/s13148-018-0496-x.
Article
CAS
Google Scholar
Witjes JA, Morote J, Cornel EB, Gakis G, van Valenberg FJP, Lozano F, et al. Performance of the bladder EpiCheck™ methylation test for patients under surveillance for non–muscle-invasive bladder Cancer: results of a multicenter, prospective, blinded clinical trial. Eur Urol Oncol. 2018;1(4):307–13. https://doi.org/10.1016/j.euo.2018.06.011.
Article
PubMed
Google Scholar
Springer SU, Chen CH, Del Carmen Rodriguez Pena M, Li L, Douville C, Wang Y, et al. Non-invasive detection of urothelial cancer through the analysis of driver gene mutations and aneuploidy. ELife. 2018;7:1–27. https://doi.org/10.7554/eLife.32143.
Article
Google Scholar
D’Andrea D, Soria F, Zehetmayer S, Gust KM, Korn S, Witjes JA, Shariat SF. Diagnostic accuracy, clinical utility and influence on decision-making of a methylation urine biomarker test in the surveillance of non-muscle-invasive bladder cancer. BJU Int. 2019;123(6):959–67. https://doi.org/10.1111/bju.14673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batista R, Vinagre J, Prazeres H, Sampaio C, Peralta P, Conceição P, et al. Validation of a novel, sensitive, and specific urine-based test for recurrence surveillance of patients with non-muscle-invasive bladder Cancer in a comprehensive multicenter study. Front Genet. 2019;10(December):1–15. https://doi.org/10.3389/fgene.2019.01237.
Article
Google Scholar
Sapre N, Macintyre G, Clarkson M, Naeem H, Cmero M, Kowalczyk A, et al. A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. Br J Cancer. 2016;114(4):454–62. https://doi.org/10.1038/bjc.2015.472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kavalieris L, O’Sullivan P, Frampton C, Guilford P, Darling D, Jacobson E, et al. Performance characteristics of a multigene urine biomarker test for monitoring for recurrent Urothelial carcinoma in a multicenter study. J Urol. 2017;197(6):1419–26. https://doi.org/10.1016/j.juro.2016.12.010.
Article
PubMed
Google Scholar
Lotan Y, OʼSullivan P, Raman JD, Shariat SF, Kavalieris L, Frampton C, et al. Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urologic Oncol. 2017;35(8):531.e15–22. https://doi.org/10.1016/j.urolonc.2017.03.008.
Article
Google Scholar
Pichler R, Fritz J, Tulchiner G, Klinglmair G, Soleiman A, Horninger W, et al. Increased accuracy of a novel mRNA-based urine test for bladder cancer surveillance. BJU Int. 2018;121(1):29–37. https://doi.org/10.1111/bju.14019.
Article
CAS
PubMed
Google Scholar
Wallace E, Higuchi R, Satya M, McCann L, Sin MLY, Bridge JA, et al. Development of a 90-minute integrated noninvasive urinary assay for bladder Cancer detection. J Urol. 2018;199(3):655–62. https://doi.org/10.1016/j.juro.2017.09.141.
Article
PubMed
Google Scholar
Mourah S, Cussenot O, Vimont V, Desgrandchamps F, Teillac P, Cochant-Priollet B, et al. Assessment of microsatellite instability in urine in the detection of transitional-cell carcinoma of the bladder. Int J Cancer. 1998;79(6):629–33. https://doi.org/10.1002/(SICI)1097-0215(19981218)79:6<629::AID-IJC13>3.0.CO;2-1.
Article
CAS
PubMed
Google Scholar
Van Oers JMM, Lurkin I, Van Exsel AJA, Nijsen Y, Van Rhijn BWG, Van Der Aa MNM, Zwarthoff EC. A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine. Clin Cancer Res. 2005;11(21):7743–8. https://doi.org/10.1158/1078-0432.CCR-05-1045.
Article
CAS
PubMed
Google Scholar
Heller G, Babinsky VN, Ziegler B, Weinzierl M, Noll C, Altenberger C, et al. Genome-wide CpG island methylation analyses in non-small cell lung cancer patients. Carcinogenesis. 2013;34(3):513–21. https://doi.org/10.1093/carcin/bgs363.
Article
CAS
PubMed
Google Scholar
Kim JG, Takeshima H, Niwa T, Rehnberg E, Shigematsu Y, Yoda Y, et al. Comprehensive DNA methylation and extensive mutation analyses reveal an association between the CpG island methylator phenotype and oncogenic mutations in gastric cancers. Cancer Lett. 2013;330(1):33–40. https://doi.org/10.1016/j.canlet.2012.11.022.
Article
CAS
PubMed
Google Scholar
Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, et al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene. 2006;25(7):1070–80. https://doi.org/10.1038/sj.onc.1209154.
Article
CAS
PubMed
Google Scholar
Kelly TK, Jones PA, Sharma S. Epigenetics in cancer. Carcinogenesis. 2009;31(1):27–36. https://doi.org/10.1093/carcin/bgp220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saxonov S, Berg P, D. L. B. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci. 2006;18(2):193–204. https://doi.org/10.1080/03071375.1994.9747015.
Article
Google Scholar
Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer. 2003;3(4):253–66. https://doi.org/10.1038/nrc1045.
Article
CAS
PubMed
Google Scholar
Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res. 2011;17(17):5582–92. https://doi.org/10.1158/1078-0432.CCR-10-2659.
Article
CAS
PubMed
Google Scholar
Serizawa RR, Ralfkiær U, Steven K, Lam GW, Schmiedel S, Schüz J, et al. Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events. Int J Cancer. 2011;129(1):78–87. https://doi.org/10.1002/ijc.25651.
Article
CAS
PubMed
Google Scholar
Kandimalla R, Van Tilborg AAG, Kompier LC, Stumpel DJPM, Stam RW, Bangma CH, Zwarthoff EC. Genome-wide analysis of CpG Island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol. 2012;61(6):1245–56. https://doi.org/10.1016/j.eururo.2012.01.011.
Article
CAS
PubMed
Google Scholar
Renard I, Joniau S, van Cleynenbreugel B, Collette C, Naômé C, Vlassenbroeck I, et al. Identification and validation of the methylated TWIST1 and NID2 genes through Real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder Cancer in urine samples. Eur Urol. 2010;58(1):96–104. https://doi.org/10.1016/j.eururo.2009.07.041.
Article
CAS
PubMed
Google Scholar
Cancer T, Atlas G. Comprehensive molecular characterization of Urothelial bladder carcinoma:the Cancer genome Atlas research network. Nature. 2013;507(7492):315–22. https://doi.org/10.1038/nature12965.Comprehensive.
Article
Google Scholar
Billerey C, Chopin D, Bralet M, Lahaye J, Abbou CC, Bonaventure J, et al. Short Communication. 2001;158(6):1955–9.
CAS
Google Scholar
Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A. 2013;110(15):6021–6. https://doi.org/10.1073/pnas.1303607110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douville C, Springer S, Kinde I, Cohen JD, Hruban RH, Lennon AM, et al. Detection of aneuploidy in patients with cancer through amplification of long interspersed nucleotide elements (LINEs). Proc Natl Acad Sci U S A. 2018;115(8):1871–6. https://doi.org/10.1073/pnas.1717846115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kiselev FL. MicroRNA and cancer. Mol Biol. 2014;48(2):232–42.
CAS
Google Scholar
Lotan Y, Shariat SF, Schmitz-Dräger BJ, Sanchez-Carbayo M, Jankevicius F, Racioppi M, et al. Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urologic Oncol. 2010;28(4):441–8. https://doi.org/10.1016/j.urolonc.2009.11.004.
Article
Google Scholar
Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35 REV. ISS. 3):5427–40. https://doi.org/10.1038/sj.onc.1205600.
Article
CAS
PubMed
Google Scholar
van der Aa MNM, Steyerberg EW, Bangma C, van Rhijn BWG, Zwarthoff EC, van der Kwast TH. Cystoscopy revisited as the gold standard for detecting bladder Cancer recurrence: diagnostic review Bias in the randomized, prospective CEFUB trial. J Urol. 2010;183(1):76–80. https://doi.org/10.1016/j.juro.2009.08.150.
Article
PubMed
Google Scholar
Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010;70(20):8169–78. https://doi.org/10.1158/0008-5472.CAN-10-1335.
Article
CAS
PubMed
PubMed Central
Google Scholar