Albisinni S, Biaou I, Marcelis Q, Aoun F, De Nunzio C, Roumeguère T. New medical treatments for lower urinary tract symptoms due to benign prostatic hyperplasia and future perspectives. BMC Urol. 2016;16(1):58.
Article
PubMed
PubMed Central
Google Scholar
MacDonald D, McNicholas TA. Drug treatments for lower urinary tract symptoms secondary to bladder outflow obstruction: focus on quality of life. Drugs. 2003;63(18):1947–62.
Article
CAS
PubMed
Google Scholar
Kai W, Lin C, Jin Y, Ping-Lin H, Xun L, Bastian A, et al. Urethral meatus stricture BOO stimulates bladder smooth muscle cell proliferation and pyroptosis via IL-1β and the SGK1-NFAT2 signaling pathway. Mol Med Rep. 2020;22(1):219–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirone V, Imbimbo C, Longo N, Fusco F. The detrusor muscle: an innocent victim of bladder outlet obstruction. Eur Urol. 2007;51(1):57–66.
Article
PubMed
Google Scholar
Hughes FM Jr, Hill HM, Wood CM, Edmondson AT, Dumas A, Foo WC, et al. The NLRP3 inflammasome mediates inflammation produced by bladder outlet obstruction. J Urol. 2016;195(5):1598–605.
Article
CAS
PubMed
Google Scholar
Lin WY, Wu SB, Lin YP, Chang PJ, Levin RM, Wei YH. Reversing bladder outlet obstruction attenuates systemic and tissue oxidative stress. BJU Int. 2012;110(8):1208–13.
Article
PubMed
Google Scholar
Wang N, Duan L, Ding J, Cao Q, Qian S, Shen H, et al. MicroRNA-101 protects bladder of BOO from hypoxia-induced fibrosis by attenuating TGF-β-smad2/3 signaling. IUBMB Life. 2019;71(2):235–43.
CAS
PubMed
Google Scholar
Ghosal S, Das S, Sen R, Chakrabarti J. HumanViCe: host ceRNA network in virus infected cells in human. Front Genet. 2014;5:249.
Article
PubMed
PubMed Central
Google Scholar
Zhou DN, Ye CS, Deng YF. CircRNAs: potency of protein translation and feasibility of novel biomarkers and therapeutic targets for head and neck cancers. Am J Transl Res. 2020;12(5):1535–52.
CAS
PubMed
PubMed Central
Google Scholar
Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 2017;8(42):73271–81.
Article
PubMed
PubMed Central
Google Scholar
Su Y, Yi Y, Li L, Chen C. circRNA-miRNA-mRNA network in age-related macular degeneration: from construction to identification. Exp Eye Res. 2021;203:108427.
Article
CAS
PubMed
Google Scholar
Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17(4):205–11.
Article
CAS
PubMed
Google Scholar
Wang M, Yu F, Li P. Circular RNAs: characteristics, function and clinical significance in hepatocellular carcinoma. Cancers (Basel). 2018;10(8):258.
Article
PubMed
Google Scholar
Cao M, Zhang L, Wang JH, Zeng H, Peng Y, Zou J, et al. Identifying circRNA-associated-ceRNA networks in retinal neovascularization in mice. Int J Med Sci. 2019;16(10):1356–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang B, Wu J, Huang Q, Yuan X, Yang Y, Jiang W, et al. Comprehensive analysis of differentially expressed lncRNA, circRNA and mRNA and their ceRNA networks in mice with severe acute pancreatitis. Front Genet. 2021;12:625846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA. 2017;8(1):e1364.
Article
Google Scholar
Hedlund E, Deng Q. Single-cell RNA sequencing: technical advancements and biological applications. Mol Asp Med. 2018;59:36–46.
Article
CAS
Google Scholar
Monastyrskaya K, Sánchez-Freire V, Hashemi Gheinani A, Klumpp DJ, Babiychuk EB, Draeger A, et al. miR-199a-5p regulates urothelial permeability and may play a role in bladder pain syndrome. Am J Pathol. 2013;182(2):431–48.
Article
CAS
PubMed
Google Scholar
Ekman M, Bhattachariya A, Dahan D, Uvelius B, Albinsson S, Swärd K. Mir-29 repression in bladder outlet obstruction contributes to matrix remodeling and altered stiffness. PLoS ONE. 2013;8(12):e82308.
Article
PubMed
PubMed Central
Google Scholar
Zhu B, Kang Z, Zhu S, Zhang Y, Lai X, Zhou L, et al. Multi-omics characterization of circular RNA-encoded novel proteins associated with bladder outlet obstruction. Front Cell Dev Biol. 2022;9:772534.
Article
PubMed
PubMed Central
Google Scholar
Kanno Y, Mitsui T, Kitta T, Moriya K, Tsukiyama T, Hatakeyama S, et al. The inflammatory cytokine IL-1β is involved in bladder remodeling after bladder outlet obstruction in mice. Neurourol Urodyn. 2016;35(3):377–81.
Article
CAS
PubMed
Google Scholar
Bschleipfer T, Nandigama R, Moeller S, Illig C, Weidner W, Kummer W. Bladder outlet obstruction influences mRNA expression of cholinergic receptors on sensory neurons in mice. Life Sci. 2012;91(21–22):1077–81.
Article
CAS
PubMed
Google Scholar
Patel R, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7(2):e30619.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen S, Kong J, Qiu Y, Yang X, Wang W, Yan L. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis. J Cell Biochem. 2019;120(6):10069–81.
Article
CAS
PubMed
Google Scholar
Klopfenstein D, Zhang L, Pedersen BS, Ramírez F, Vesztrocy AW, Naldi A, et al. GOATOOLS: a Python library for gene ontology analyses. Sci Rep. 2018;8(1):10872.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li C-B, Wang H-F, Feng Z-K, Fu Y-B, Zhang J, Qin J-Y. Identification of immune-related genes for Hepatocellular Carcinoma: a study based on TCGA data. J Men’s Health. 2021;17(2):101–13.
Article
Google Scholar
Niemczyk G, Fus L, Czarzasta K, Jesion A, Radziszewski P, Gornicka B, et al. Expression of toll-like receptors in the animal model of bladder outlet obstruction. Biomed Res Int. 2020;2020:6632359.
Article
PubMed
PubMed Central
Google Scholar
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.
Article
CAS
PubMed
Google Scholar
Li M, Liu Y, Zhang X, Liu J, Wang P. Transcriptomic analysis of high-throughput sequencing about circRNA, lncRNA and mRNA in bladder cancer. Gene. 2018;677:189–97.
Article
CAS
PubMed
Google Scholar
Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015;16:245.
Article
PubMed
PubMed Central
Google Scholar
Duan LJ, Qi J, Kong XJ, Huang T, Qian XQ, Xu D, et al. MiR-133 modulates TGF-β1-induced bladder smooth muscle cell hypertrophic and fibrotic response: implication for a role of microRNA in bladder wall remodeling caused by bladder outlet obstruction. Cell Signal. 2015;27(2):215–27.
Article
CAS
PubMed
Google Scholar
Hashemi Gheinani A, Burkhard FC, Rehrauer H, Aquino Fournier C, Monastyrskaya K. MicroRNA MiR-199a-5p regulates smooth muscle cell proliferation and morphology by targeting WNT2 signaling pathway. J Biol Chem. 2015;290(11):7067–86.
Article
PubMed
PubMed Central
Google Scholar
Duan LJ, Cao QF, Xu D, Liu HL, Qi J. Bioinformatic analysis of microRNA-mRNA expression profiles of bladder tissue induced by bladder outlet obstruction in a rat model. Mol Med Rep. 2017;16(4):4803–10.
Article
CAS
PubMed
Google Scholar
Koeck I, Hashemi Gheinani A, Baumgartner U, Vassella E, Bruggmann R, Burkhard FC, et al. Tumor necrosis factor-α initiates miRNA-mRNA signaling cascades in obstruction-induced bladder dysfunction. Am J Pathol. 2018;188(8):1847–64.
Article
CAS
PubMed
Google Scholar
Chen W, Yao G, Zhou K. miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ablation therapy via targeting androgen receptor variant 7. J Cell Biochem. 2019;120(8):14055–64.
Article
CAS
PubMed
Google Scholar
Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res. 2020;116(7):1323–34.
Article
CAS
PubMed
Google Scholar
Deng ZH, Yu GS, Deng KL, Feng ZH, Huang Q, Pan B, et al. Hsa_circ_0088233 alleviates proliferation, migration, and invasion of prostate cancer by targeting hsa-miR-185-3p. Front Cell Dev Biol. 2020;8:528155.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang J, Chen X, Yang Z. Polymeric immunoglobulin receptor (PIGR) exerts oncogenic functions via activating ribosome pathway in hepatocellular carcinoma. Int J Med Sci. 2021;18(2):364–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Zhang L, Tan F, Wang LF, Liu DH, Wang RJ, et al. MiR-153-5p promotes sensibility of colorectal cancer cells to oxaliplatin via targeting Bcl-2-mediated autophagy pathway. Biosci Biotechnol Biochem. 2020;84(8):1645–51.
Article
CAS
PubMed
Google Scholar
Kim J, Morley S, Le M, Bedoret D, Umetsu DT, Di Vizio D, et al. Enhanced shedding of extracellular vesicles from amoeboid prostate cancer cells: potential effects on the tumor microenvironment. Cancer Biol Ther. 2014;15(4):409–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren R, Wu J, Zhou MY. MiR-135b-5p affected malignant behaviors of ovarian cancer cells by targeting KDM5B. Eur Rev Med Pharmacol Sci. 2020;24(22):11469.
CAS
PubMed
Google Scholar
Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, et al. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J. 2019;33(1):264–74.
Article
CAS
PubMed
Google Scholar